The previous message was just suggesting unchecked Sendable, but instead
we should be suggesting to add final to the class. We also don't
outright suggest using unchecked Sendable -- following
https://github.com/swiftlang/swift/pull/81738 precedent.
Resolves rdar://155790695
In the provided test case, the generic signature of the
protocol requirement is
<Self, T where Self == T.A, T: P2>
The conformance requirement `Self: P1` is derived from `T: P2`
and `Self.A: P1` in P1. So given a substitution map
`{ Self := X, T := T }` that replaces T with a concrete type X
and T with a type parameter T, there are two ways to recover a
substituted conformance for `Self: P1`:
- We can apply the substitution map to Self to get X, and look
up conformance of X to P1, to get a concrete conformance.
- We can evaluate the conformance path `(T: P2)(Self.A: P1)`,
to get an abstract conformance.
Both answers are correct, but SILGenModule::emitProtocolWitness()
was assuming it would always get a concrete conformance back.
This was the case until e3c8f423bc,
but then we started returning an abstract conformance. SILGen
would then mangle the protocol witness thunk in a way that was
not sufficiently unique, and as a result, we could miscompile
a program where two witness tables both hit this same scenario.
By using contextual types in the getRequirementToWitnessThunkSubs()
substitution map, we ensure that evaluating the conformance path
against the substitution map produces the same result as performing
the global lookup.
Also, to prevent this from happening again, add a check to SILGen
to guard against emitting two protocol witness thunks with the
same mangled name.
Unfortunately, this is done intentionally as part of some
backward deployment logic for coroutine accessors. There is a
hack to allow duplicate thunks with the same name in this case,
but this should be revisited some day.
Fixes rdar://problem/155624135..
Functions or template instantiations with Obj-C types should always be
behind a macro to make sure the interop header compiles cleanly in C++.
rdar://152836730
This change adds a new type of cache (cache by type descriptor) to the protocol conformance lookup system. This optimization is beneficial for generic types, where the
same conformance can be reused across different instantiations of the generic type.
Key changes:
- Add a `GetOrInsertManyScope` class to `ConcurrentReadableHashMap` for performing
multiple insertions under a single lock
- Add type descriptor-based caching for protocol conformances
- Add environment variables for controlling and debugging the conformance cache
- Add tests to verify the behavior of the conformance cache
- Fix for https://github.com/swiftlang/swift/issues/82889
The implementation is controlled by the `SWIFT_DEBUG_ENABLE_CACHE_PROTOCOL_CONFORMANCES_BY_TYPE_DESCRIPTOR`
environment variable, which is enabled by default.
Since LayoutPrespecialization has been enabled by default in all compiler
invocations for quite some time, it doesn't make sense for it to be treated as
experimental feature. Make it a baseline feature and remove all the
checks for it from the compiler.
Specifically the type checker to work around interface types not having
isolation introduces casts into the AST that enrich the AST with isolation
information. Part of that information is Sendable. This means that we can
sometimes lose due to conversions that a function is actually Sendable. To work
around this, we today suppress those errors when they are emitted (post 6.2, we
should just change their classification as being Sendable... but I don't want to
make that change now).
This change just makes the pattern matching for these conversions handle more
cases so that transfernonsendable_closureliterals_isolationinference.swift now
passes.
When importing custom availability domains with dynamic predicates from Clang
modules, synthesize predicate functions for `if #available` queries and call
them when generating SIL.
Resolves rdar://138441312.
Add an extra opaque field to AddressSpace, which can be used by clients
of RemoteInspection to distinguish between different address spaces.
LLDB employs an optimization where it reads memory from files instead of
the running process whenever it can to speed up memory reads (these can
be slow when debugging something over a network). To do this, it needs
to keep track whether an address originated from a process or a file. It
currently distinguishes addresses by setting an unused high bit on the
address, but because of pointer authentication this is not a reliable
solution. In order to keep this optimization working, this patch adds an
extra opaque AddressSpace field to RemoteAddress, which LLDB can use on
its own implementation of MemoryReader to distinguish between addresses.
This patch is NFC for the other RemoteInspection clients, as it adds
extra information to RemoteAddress, which is entirely optional and if
unused should not change the behavior of the library.
Although this patch is quite big the changes are largely mechanical,
replacing threading StoredPointer with RemoteAddress.
rdar://148361743