Implement a new "fast" dependency scanning option,
`-scan-dependencies`, in the Swift frontend that determines all
of the source file and module dependencies for a given set of
Swift sources. It covers four forms of modules:
1) Swift (serialized) module files, by reading the module header
2) Swift interface files, by parsing the source code to find imports
3) Swift source modules, by parsing the source code to find imports
4) Clang modules, using Clang's fast dependency scanning tool
A single `-scan-dependencies` operation maps out the full
dependency graph for the given Swift source files, including all
of the Swift and Clang modules that may need to be built, such
that all of the work can be scheduled up front by the Swift
driver or any other build system that understands this
option. The dependency graph is emitted as JSON, which can be
consumed by these other tools.
Some code paths that see target triples go through the frontend
without seeing the driver. Therefore, perform the same "simulator"
inference for x86 iOS/tvOS/watchOS triples also in the frontend,
to ensure that we remain compatible. Also make sure that
-print-target-info performs the appropriate adjustment.
The *-simulator target triples have been used consistently in tools for
several years to indicate simulator targets. Stop inferring the
simulator part, rdar://problem/35810403.
Use a newly introduced `swift_gyb_target_sources` to gyb and use the
generated sources when building. Let CMake figure out when to run the
command, let it invoke the command properly, and indicate that the
sources being added to the target are generated.
Delete all of the formalism and infrastructure around maintaining our own copy of the global context. The final frontier is the Builtins, which need to lookup intrinsics in a given scratch context and convert them into the appropriate Swift annotations and types. As these utilities have wormed their way through the compiler, I have decided to leave this alone for now.
Some code paths that see target triples go through the frontend
without seeing the driver. Therefore, perform the same "simulator"
inference for x86 iOS/tvOS/watchOS triples also in the frontend,
to ensure that we remain compatible. Also make sure that
-print-target-info performs the appropriate adjustment.
The *-simulator target triples have been used consistently in tools for
several years to indicate simulator targets. Stop inferring the
simulator part, rdar://problem/35810403.
When mangling sugared types for DWARF debug info, we would
occassionally mix generic parameter types from different
generic environments. Since the mangling for a generic
parameter type only recorded the depth and the index, even
for distinct sugared forms, the remangler would produce a
more 'compact' mangling, by folding together generic parameters
that have the same depth/index, but distinct sugarings in the
AST.
Prevent this from happening by desugaring DWARF types the
correct amount, substituting away generic parameters while
preserving everything else.
Also, re-enable the round-trip verification with the remangler.
Fixes <rdar://problem/59496022>, <https://bugs.swift.org/browse/SR-12204>.
A follow-up PR adds a flag to control an inline namespace that allows
symbols in libDemangling to be distinguished between the runtime and
the compiler. These dependencies ensure that the flag is plumbed
through for inclusions of Demangling headers that aren't already
covered by existing `target_link_libraries`.
There were a couple of methods in LangOptions and some related ones in
Availability and ASTContext that were added more recently.
Refactor the three older checks to the newer scheme.
This allows the usage of the whole remark infrastructure developed in
LLVM, which includes a new binary format, metadata in object files, etc.
This gets rid of the YAMLTraits-based remark serialization and does the
plumbing for hooking to LLVM's main remark streamer.
For more about the idea behind LLVM's main remark streamer, see the
docs/Remarks.rst changes in https://reviews.llvm.org/D73676.
The flags are now:
* -save-optimization-record: enable remarks, defaults to YAML
* -save-optimization-record=<format>: enable remarks, use <format> for
serialization
* -save-optimization-record-passes <regex>: only serialize passes that
match <regex>.
The YAMLTraits in swift had a different `flow` setting for the debug
location, resulting in some test changes.
Add the platform conditional and set up other basics for the toolchain.
The ConditionalCompilation tests are updated to match, since otherwise
they seem to trip when building on non-OpenBSD platforms. The
Driver/linker test is updated to ensure lld is passed on this platform.
Note that OpenBSD calls "x86_64" as "amd64", so we use that name for the
architecture instead of trying to alias one to the other, as this makes
things simpler.
I still need to investigate the failures.
To unblock CI I'm disabling the verification for now.
Failing to correctly remangle a symbol should work, but failing so will not cause any severe damage (miscompile, etc.) in most cases.
rdar://problem/59813007
rdar://problem/59496022
https://bugs.swift.org/browse/SR-12204
Currently `UnifiedStatsReporter::flushTracesAndProfiles`
can kick off requests when computing the source
ranges for collected entities, which will try to
record additional stats about the requests.
This currently happens to work without issue,
but #29289 bumped the counters down slightly such
that the vector storing the stats now performs a
re-allocation when we do a reentrant stat entry.
This then caused a use-after-free as we try to
continue iterating over the old buffer.
Fix this issue by refusing to record any new stats
while we're flushing out the ones we've already
recorded.
Add support for conditional compilation under macCatalyst
Developers can now detect whether they are compiling for macCatalyst at
compile time with:
#if targetEnvironment(macCatalyst)
// Code only compiled under macCatalyst.
#end
Add support in the driver and frontend for macCatalyst target
targets and library search paths.
The compiler now adds two library search paths for overlays when compiling
for macCatalyst: one for macCatalyst libraries and one for zippered macOS
libraries. The macCatalyst path must take priority over the normal macOS path
so that in the case of 'unzippered twins' the macCatalyst library is
found instead of the macOS library.
To support 'zippered' builds, also add support for a new -target-variant
flag. For zippered libraries, the driver invocation takes both a -target and a
-target-variant flag passes them along to the frontend. We support builds both
when the target is a macOS triple and the target variant is macCatalyst and
also the 'reverse zippered' configuration where the target is macCatalyst and the
target-variant is macOS.