Our libcache implementation of swift::sys::Cache was broken for
ref-counted values (which are used by e.g. the SourceKit ASTManager).
It would always `retain(value)` in `set(key, value)`, but under the hood
libcache shares values, so we would only get one `release(value)` if the
same value was used across multiple keys, or if the same value *and* key
were set multiple times.
This was causing us to never release ASTs cached by SourceKit even when
the underlying libcache purged itself under memory pressure.
rdar://problem/21619189
Cygwin is considered a distinct target with a distinct ABI, environment
conditions, and data types. Though the goal of the project is
native Windows integration with UNIX-likes, that is not compatible with
the idea that the platform can be ignored as Win-like enough to have the
existing os(Windows) condition apply.
This helps disambiguate files that might otherwise be hard to sort through
if multiple runs output stats together in a single directory. The names
don't have to be perfect, just contain sufficient hints (and be parseable)
to differentiate module, arch, opt and output-type variation in jobs.
Deserializing a witness record in a conformance may fail if either of the requirement or witness changed name or type, most likely due to SDK modernization changes across Swift versions. When this happens, leave an opaque placeholder in the conformance to indicate that the witness exists but we don't get to see it. For expedience, right now this just witnesses the requirement to itself, so that code in the type checker or elsewhere that tries to ad-hoc devirtualize references to the requirement just gets the requirement back. Arguably, we shouldn't include the witness at all in imported conformances, since they should be an implementation detail, but that's a bigger, riskier change. This patch as is should be enough to address rdar://problem/31185053.
The Swift 4 Migrator is invoked through either the driver and frontend
with the -update-code flag.
The basic pipeline in the frontend is:
- Perform some list of syntactic fixes (there are currently none).
- Perform N rounds of sema fix-its on the primary input file, currently
set to 7 based on prior migrator seasons. Right now, this is just set
to take any fix-it suggested by the compiler.
- Emit a replacement map file, a JSON file describing replacements to a
file that Xcode knows how to understand.
Currently, the Migrator maintains a history of migration states along
the way for debugging purposes.
- Add -emit-remap frontend option
This will indicate the EmitRemap frontend action.
- Don't fork to a separte swift-update binary.
This is going to be a mode of the compiler, invoked by the same flags.
- Add -disable-migrator-fixits option
Useful for debugging, this skips the phase in the Migrator that
automatically applies fix-its suggested by the compiler.
- Add -emit-migrated-file-path option
This is used for testing/debugging scenarios. This takes the final
migration state's output text and writes it to the file specified
by this option.
- Add -dump-migration-states-dir
This dumps all of the migration states encountered during a migration
run for a file to the given directory. For example, the compiler
fix-it migration pass dumps the input file, the output file, and the
remap file between the two.
State output has the following naming convention:
${Index}-${MigrationPassName}-${What}.${extension}, such as:
1-FixitMigrationState-Input.swift
rdar://problem/30926261
There are cases where the re-mangling doesn't yield the original mangled name.
This is no problem for the compiler as it only affects how mangling substitutions are handled.
rdar://problem/31539542
- Add CompilerInvocation::getPCHHash
This will be used when creating a unique filename for a persistent
precompiled bridging header.
- Automatically generate and use a precompiled briding header
When we're given both -import-objc-header and -pch-output-dir
arguments, we will try to:
- Validate what we think the PCH filename should be for the bridging
header, based on the Swift PCH hash and the clang module hash.
- If we're successful, we'll just use it.
- If it's out of date or something else is wrong, we'll try to
emit it.
- This gives us a single filename which we can `stat` to check for the
validity of our code completion cache, which is keyed off of module
name, module filename, and module file age.
- Cache code completion results from imported modules
If we just have a single .PCH file imported, we can use that file as
part of the key used to cache declarations in a module. Because
multiple files can contribute to the __ObjC module, we've always given
it the phony filename "<imports>", which never exists, so `stat`-ing it
always fails and we never cache declarations in it.
This is extremely problematic for projects with huge bridging headers.
In the case where we have a single PCH import, this can bring warm code
completion times down to about 500ms from over 2-3s, so it can provide a
nice performance win for IDEs.
- Add a new test that performs two code-completion requests with a bridging header.
- Add some -pch-output-dir flags to existing SourceKit tests that import a bridging
header.
rdar://problem/31198982
Fixes:
https://bugs.swift.org/browse/SR-3455https://bugs.swift.org/browse/SR-3663https://bugs.swift.org/browse/SR-4032https://bugs.swift.org/browse/SR-4031
Now, compilation conditions are validated at first, then evaluated. Also,
in non-Swift3 mode, '&&' now has higher precedence than '||'.
'A || B && C || D' are evaluated as 'A || (B && C) || D'.
Swift3 source breaking changes:
* [SR-3663] This used to be accepted and evaluate to 'true' because of short
circuit without any validation.
#if true || true * 12 = try Anything is OK?
print("foo")
#endif
In this change, remaining expressions are properly validated and
diagnosed if it's invalid.
* [SR-4031] Compound name references are now diagnosed as errors.
e.g. `#if os(foo:bar:)(macOS)` or `#if FLAG(x:y:)`
Swift3 compatibility:
* [SR-3663] The precedence of '||' and '&&' are still the same and the
following code evaluates to 'true'.
#if false || true && false
print("foo")
#endif
Previously it was part of swiftBasic.
The demangler library does not depend on llvm (except some header-only utilities like StringRef). Putting it into its own library makes sure that no llvm stuff will be linked into clients which use the demangler library.
This change also contains other refactoring, like moving demangler code into different files. This makes it easier to remove the old demangler from the runtime library when we switch to the new symbol mangling.
Also in this commit: remove some unused API functions from the demangler Context.
fixes rdar://problem/30503344
Instead of appending a character for each substitution, we now prefix the substitution with the repeat count, e.g.
AbbbbB -> A5B
The same is done for known-type substitutions, e.g.
SiSiSi -> S3i
This significantly shrinks mangled names which contain large lists of the same type, like
func foo(_ x: (Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int))
rdar://problem/30707433
Avoid using std::string and std::vector in the demangler. Instead use vectors/strings with storage allocated by the NodeFactory’s bump pointer allocator.
This brings another 35% speedup. Especially in the case the Demangle::Context is not reused for subsequent demanglings.
Put in a general mechanism for mapping user-specified "compatibility
versions" to proper "effective versions" (what #if and @available
checking should respect). This may still be different from the
intrinsic "language version"; right now master is considered a "3.1"
compiler with a "Swift 4 mode", and we plan to ship a "4.0" compiler
with a "Swift 3 mode" that will have a version number of something
like "3.2".
rdar://problem/29884401 / SR-3791
Explicitly specify the aliased type (IndexType) rather than the
underlying type (unsigned) when invoking `CreateNode` to disambiguate
overload when targeting Windows. NFC.