While the intent behind this functor was noble, it has grown in complexity
considerably over the years, and it seems to be nothing but a source of
crashes in practice. I don't want to deal with it anymore, so I've decided
to just subsume all usages with LookUpConformanceInModule instead.
Specifically, we write a string out like:
sil [isolation "$REPRESENTATION OF ISOLATION"] @function : $@convention(thin) ...
The idea is that by using a string, we avoid parsing issues of the isolation and
have flexibility. I left in the way we put isolation into the comment above
functions so I did not break any tests that rely on it. I also made it so that
we only accept this with sil tests that pass in the flag
"sil-print-function-isolation-info". I am going to for the next release put in a
full real implementation of this that allows for actor isolation to become a
true first class citizen in SIL. But for now this at least lets us write tests
in the short term.
Since this is temporary and behind a flag, I did not add support for
serialization since this is just for writing textual SIL tests.
C code is highly likely to want to use pointers as references between dependent
structs, and we would like to be able to readily map these to lifetime-dependent
Swift values. Making C types addressable-for-dependencies ensures that any function
producing a dependency on such a value receives a stable in-memory address for that
value, allowing borrows and inout accesses to always be representable as pointers.
rdar://153648393
Ideally we'd be able to use the llvm interleave2 and deinterleave2
intrinsics instead of adding these, but deinterleave currently isn't
available from Swift, and even if you hack that in, the codegen from
LLVM is worse than what shufflevector produces for both x86 and arm. So
in the medium-term we'll use these builtins, and hope to remove them in
favor of [de]interleave2 at some future point.
Every `LowerType::visit*` function eventually calls through to a
`LowerType::handle*` function. After
https://github.com/swiftlang/swift/pull/81581, every
`LowerType::handle*` needs to set the `hasPack` flag based on the
passed-in type by calling `mergeHasPack`. Add the missing call in the
`handleAggregateByProperties` function.
rdar://152580661
NFC *except* that I noticed a bug by inspection where we suppress
`@escaping` when print enum element types. Since this affects
recursive positions, we end up suppressing `@escaping` in places
we shouldn't. This is unlikely to affect much real code, but should
still obviously be fixed.
The new design is a little sketchy in that we're using `const` to
prevent direct use (and allow initialization of `const &` parameters)
but still relying on modification of the actual object. Essentially,
we are treating the `const`-ness of the reference as a promise to leave
the original value in the object after computation rather than a
guarantee of not modifying the object. This is okay --- a temporary
bound to a `const` reference is still a non-`const` object formally
and can be modified without invoking UB --- but makes me a little
uncomfortable.
We are going to need to add more flags to the various checked cast
instructions. Generalize the CastingIsolatedConformances bit in all of
these SIL instructions to an "options" struct that's easier to extend.
Precursor to rdar://152335805.
The PR #81766 introduced some concrete SIMD operations, but
`init(repeating:)` was temporarily disabled due to differentiation
testing break. See:
7a00619065
This PR contains two changes:
1. Define custom derivatives for concrete `init(repeating:)` so we do
not fall into non-differentiability error diagnostic.
2. Add a fix to SIL linker so differentiability witness lookup is done
when the original function has both `@_alwaysEmitIntoClient` and
`@_transparent`. Similar changes were introduced previously in #78908,
but they only handled `@_alwaysEmitIntoClient` without `@_transparent`.
<!--
If this pull request is targeting a release branch, please fill out the
following form:
https://github.com/swiftlang/.github/blob/main/PULL_REQUEST_TEMPLATE/release.md?plain=1
Otherwise, replace this comment with a description of your changes and
rationale. Provide links to external references/discussions if
appropriate.
If this pull request resolves any GitHub issues, link them like so:
Resolves <link to issue>, resolves <link to another issue>.
For more information about linking a pull request to an issue, see:
https://docs.github.com/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue
-->
<!--
Before merging this pull request, you must run the Swift continuous
integration tests.
For information about triggering CI builds via @swift-ci, see:
https://github.com/apple/swift/blob/main/docs/ContinuousIntegration.md#swift-ci
Thank you for your contribution to Swift!
-->
Initially this declaration is going to be used to determine
per-file default actor isolation i.e. `using @MainActor` and
`using nonisolated` but it could be extended to support other
file-global settings in the future.
Key paths can't reference non-escapable or non-copyable storage declarations,
so we don't need to refer to them resiliently, and can elide their property
descriptors.
However, declarations may still be conditionally Copyable and Escapable, and
if so, then they still need a property descriptor for resilient key path
references. When a property or subscript can be used in a context where it
is fully Copyable and Escapable, emit the property descriptor in a generic
environment constrained by the necessary conditional constraints.
Fixes rdar://151628396.
Consider an `@_alwaysEmitIntoClient` function and a custom derivative
defined
for it. Previously, such a combination resulted different errors under
different
circumstances.
Sometimes, there were linker errors due to missing derivative function
symbol -
these occurred when we tried to find the derivative in a module, while
it
should have been emitted into client's code (and it did not happen).
Sometimes, there were SIL verification failures like this:
```
SIL verification failed: internal/private function cannot be serialized or serializable: !F->isAnySerialized() || embedded
```
Linkage and serialization options for the derivative were not handled
properly,
and, instead of PublicNonABI linkage, we had Private one which is
unsupported
for serialization - but we need to serialize `@_alwaysEmitIntoClient`
functions
so the client's code is able to see them.
This patch resolves the issue and adds proper handling of custom
derivatives
of `@_alwaysEmitIntoClient` functions. Note that either both the
function and
its custom derivative or none of them should have
`@_alwaysEmitIntoClient`
attribute, mismatch in this attribute is not supported.
The following cases are handled (assume that in each case client's code
uses
the derivative).
1. Both the function and its derivative are defined in a single file in
one module.
2. Both the function and its derivative are defined in different files
which
are compiled to a single module.
3. The function is defined in one module, its derivative is defined in
another
module.
4. The function and the derivative are defined as members of a protocol
extension in two separate modules - one for the function and one for the
derivative. A struct conforming the protocol is defined in the third
module.
5. The function and the derivative are defined as members of a struct
extension in two separate modules - one for the function and one for the
derivative.
The changes allow to define derivatives for methods of `SIMD`.
Fixes#54445
<!--
If this pull request is targeting a release branch, please fill out the
following form:
https://github.com/swiftlang/.github/blob/main/PULL_REQUEST_TEMPLATE/release.md?plain=1
Otherwise, replace this comment with a description of your changes and
rationale. Provide links to external references/discussions if
appropriate.
If this pull request resolves any GitHub issues, link them like so:
Resolves <link to issue>, resolves <link to another issue>.
For more information about linking a pull request to an issue, see:
https://docs.github.com/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue
-->
<!--
Before merging this pull request, you must run the Swift continuous
integration tests.
For information about triggering CI builds via @swift-ci, see:
https://github.com/apple/swift/blob/main/docs/ContinuousIntegration.md#swift-ci
Thank you for your contribution to Swift!
-->
Implements SE-0460 -- the non-underscored version of @specialized.
It allows to specify "internal" (not abi affecting) specializations.
rdar://150033316
This prevents simplification and SILCombine passes to remove (alive) `mark_dependence_addr`.
The instruction is conceptually equivalent to
```
%v = load %addr
%d = mark_dependence %v on %base
store %d to %addr
```
Therefore the address operand has to be defined as writing to the address.
To determine whether an instruction may require pack metadata, the types
of its operands are examined.
Previously, the top level type was checked for having a pack in its
signature, and the whole type was checked for having a type anywhere in
its layout (via TypeLowering). This didn't account for the case where
the metadata was required for a resilient type which uses a pack in its
signature.
Here, during type lowering, a type having a pack in its signature is
counted towards the type having a pack.
Fixes a compiler crash.
rdar://147207926
It is like `zeroInitializer`, but does not actually initialize the memory.
It only indicates to mandatory passes that the memory is going to be initialized.
Convert a bunch of places where we're dumping to stderr and calling
`abort` over to using `ABORT` such that the message gets printed to
the pretty stack trace. This ensures it gets picked up by
CrashReporter.
We were using the isolation from the witness not from the requirement which we
are supposed to do. The witness thunk thunks the isolation from the requirement
to the witness so from an ABI perspective it should have the interface implied
by the requirement's isolation since that is what callers of the witness method
will expect.
rdar://151394209
This will cause tests today to crash since even though we are placing the
isolation now, to make it easier to read, I left in the old isolation selecting
code. This code uses the witness's isolation instead of the requirement's
isolation which is incorrect since the protocol witness thunk needs to look the
requirement from an ABI perspective since the two must be substitutable. The
crash comes from the ABI verification I added in earlier commits.
`getLoweredLocalCaptures` seems the best place to do it because
during Sema there is a chicken and an egg situation where isolation
depends on captures and in this case captures depend on isolation.
It derives the address of the first element of a vector, i.e. a `Builtin.FixedArray`, from the address of the vector itself.
Addresses of other vector elements can then be derived with `index_addr`.
Some notes:
1. In most cases, I think we were getting lucky with this by just inferring the
closure's isolation from its decl context. In the specific case that we were
looking at here, this was not true since we are returning from an @concurrent
async function a nonisolated(nonsending) method that closes over self. This
occurs since even when NonisolatedNonsendingByDefault we want to start importing
objc async functions as nonisolated(nonsending).
2. I also discovered that in the ActorIsolationChecker we were not visiting the
inner autoclosure meaning that we never set the ActorIsolation field on the
closure. After some discussion with @xedin about potentially visiting the
function in the ActorIsolationChecker, we came to the conclusion that this was
likely to result in source stability changes. So we put in a targeted fix just
for autoclosures in this specific case by setting their actor isolation in the
type checker.
3. Beyond adding tests to objc_async_from_swift to make sure that when
NonisolatedNonsendingByDefault is disabled we do the right thing, I noticed that
we did not have any tests that actually tested the behavior around
objc_async_from_swift when NonisolatedNonsendingByDefault is enabled. So I added
the relevant test lines so we can be sure that we get correct behavior in such a
case.
rdar://150209093
In Swift 6.1, we introduced `SWIFT_RETURNS_RETAINED` and
`SWIFT_RETURNS_UNRETAINED` annotations for C++ APIs to explicitly
specify the ownership convention of `SWIFT_SHARED_REFERENCE` type return
values.
Currently the Swift compiler emits warnings for unannotated C++ APIs
returning `SWIFT_SHARED_REFERENCE` types. We've received some feedback
that people are finding these warnings useful to get a reminder to
annotate their APIs. While this improves correctness , it also imposes a
high annotation burden on adopters — especially in large C++ codebases.
This patch addresses that burden by introducing two new type-level
annotations:
- `SWIFT_RETURNED_AS_RETAINED_BY_DEFAULT`
- `SWIFT_RETURNED_AS_UNRETAINED_BY_DEFAULT`
These annotations allow developers to specify a default ownership
convention for all C++ APIs returning a given
`SWIFT_SHARED_REFERENCE`-annotated type, unless explicitly overridden at
the API by using `SWIFT_RETURNS_RETAINED` or `SWIFT_RETURNS_UNRETAINED`.
If a C++ class inherits from a base class annotated with
`SWIFT_RETURNED_AS_RETAINED_BY_DEFAULT` or
`SWIFT_RETURNED_AS_UNRETAINED_BY_DEFAULT`, the derived class
automatically inherits the default ownership convention unless it is
explicitly overridden. This strikes a balance between safety/correctness
and usability:
- It avoids the need to annotate every API individually.
- It retains the ability to opt out of the default at the API level when
needed.
- To verify correctness, the user can just remove the
`SWIFT_RETURNED_AS_(UN)RETAINED_BY_DEFAULT` annotation from that type
and they will start seeing the warnings on all the unannotated C++ APIs
returning that `SWIFT_SHARED_REFERENCE` type. They can add
`SWIFT_RETURNS_(UN)RETAINED` annotation at each API in which they want a
different behaviour than the default. Then they can reintroduce the
`SWIFT_RETURNED_AS_(UN)RETAINED_BY_DEFAULT` at the type level to
suppress the warnings on remaining unannotated APIs.
A global default ownership convention (like always return
`unretained`/`unowned`) was considered but it would weaken the
diagnostic signal and remove valuable guardrails that help detect
use-after-free bugs and memory leaks in absence of
`SWIFT_RETURNS_(UN)RETAINED` annotations. In the absence of these
annotations when Swift emits the unannotated API warning, the current
fallback behavior (e.g. relying on heuristics based on API name such as
`"create"`, `"copy"`, `"get"`) is derived from Objective-C interop but
is ill-suited for C++, which has no consistent naming patterns for
ownership semantics.
Several codebases are expected to have project-specific conventions,
such as defaulting to unretained except for factory methods and
constructors. A type-level default seems like the most precise and
scalable mechanism to support such patterns. It integrates cleanly with
existing `SWIFT_SHARED_REFERENCE` usage and provides a per-type opt-in
mechanism without global silencing of ownership diagnostics.
This addition improves ergonomics while preserving the safety benefits
of explicit annotations and diagnostics.
rdar://145453509
Similarly to how https://github.com/swiftlang/swift/pull/70564 configures 'ClangImporter's 'CodeGenerator' using Swift's compilation target triple, we must use the versioned version of the 'isWeakImported' query to determine linkage for imported Clang symbols.