This corresponds to the parameter-passing convention of the Itanium C++
ABI, in which the argument is passed indirectly and possibly modified,
but not destroyed, by the callee.
@in_cxx is handled the same way as @in in callers and @in_guaranteed in
callees. OwnershipModelEliminator emits the call to destroy_addr that is
needed to destroy the argument in the caller.
rdar://122707697
The reason why I am fixing this is that otherwise, we get a warning when one
creates an actor isolated closure and pass it into a task, e.x.:
```swift
@MainActor func test() {
// We would get a warning on the closure below saying that we are sending
// a closure that is MainActor isolated.
Task {
...
}
}
```
Create two versions of the following functions:
isConsumedParameter
isGuaranteedParameter
SILParameterInfo::isConsumed
SILParameterInfo::isGuaranteed
SILArgumentConvention::isOwnedConvention
SILArgumentConvention::isGuaranteedConvention
These changes will be needed when we add a new convention for
non-trivial C++ types as the functions will return different answers
depending on whether they are called for the caller or the callee. This
commit doesn't change any functionality.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
Like `?` or property access, `x!` can be borrowing, consuming, or mutated
through depending on the use site and the ownership of the base value.
Alter SILGen to emit `x!` as a borrowing operation when the result is only
used as a borrow. Fix the move-only checker not to treat the unreachable
branch as a dead path for values and try to destroy the value unnecessarily
and possibly out-of-order with cleanups on the value. Fixes rdar://127459955.
Remove improper special-case handling of subscripts in `findStorageReferenceExprForMoveOnly`.
The correct thing to do for any storage decl ref of noncopyable type is to emit it as a borrow
if it's implemented using storage, a read accessor, or an addressor. Fixes rdar://127335590.
Later analyses are too conservative to remove a copy, but it should be fairly safe to
elide the copy for noncopyable globals, since accesses are tightly scoped and dynamically checked,
so consumes aren't possible, and borrows and inout accesses of mutable globals are dynamically
guarded and not subject to exclusivity checks. rdar://114329759
* Allow normal function results of @yield_once coroutines
* Address review comments
* Workaround LLVM coroutine codegen problem: it assumes that unwind path never returns.
This is not true to Swift coroutines as unwind path should end with error result.
a closure expression, then don't actually do it. The long term plan is
to actually do this, which should just be a matter of taking some of the
code out of reabstraction thunk emission and using it in prolog/epilog/return
emission. In the short term, the goal is just to get the conversion
information down to the closure emitter so that we can see that we're
erasing into an `@isolated(any)` type and then actually erase the
closure's isolation properly instead of relying on type-based erasure,
which can't handle parameter/capture isolation correctly.
Synthesized stub constructors contain `#line` directives and under certain
circumstances these directives can have invalid source locations. SILGen would
trigger an assert (or invoke UB in non-asserts builds) when attempting to
expand these directives into literal values. Check the source location for
validity before translating the location to a location in the outermost source
file.
Resolves rdar://121971741
The main piece that's still missing here is support for closures;
they actually mostly work, but they infer the wrong isolation for
actor-isolated closures (it's not expressed in the type, so obviously
they're non-isolated), so it's not really functional. We also have
a significant problem where reabstraction thunks collide incorrectly
because we don't mangle (or represent!) formal isolation into
SILFunctionType; that's another follow-up. Otherwise, I think SILGen
is working.
This generates significantly better code directly out of SILGen, at
the cost of having to reimplement a little bit of the argument-emission
logic to handle default arguments. But it also neatly sidesteps the
problems we have with splitting tuple RValues when the tuple contains
a pack expansion, which will require some significant surgery to RValue
to fix. That, in turn, fixes rdar://121489308.
In preparation for inserting mark_dependence instructions for lifetime
dependencies early, immediately after SILGen. That will simplify the
implementation of borrowed arguments.
Marking them unresolved is needed to make OSSA verification
conservative until lifetime dependence diagnostics runs.
This adds SIL-level support and LLVM codegen for normal results of a coroutine.
The main user of this will be autodiff as VJP of a coroutine must be a coroutine itself (in order to produce the yielded result) and return a pullback closure as a normal result.
For now only direct results are supported, but this seems to be enough for autodiff purposes.
When the deployment target is Swift 5.9 aligned or higher, we should not need
to call `_diagnoseUnavailableCodeReached()` via a back-deployment thunk since
the function will always be available in the standard library.
Resolves rdar://121878128
It's better to ask SILType if it is MoveOnly than go to the AST type and
ask if it is noncopyable, because some types in SIL do not have a
well-defined notion of conformance in the AST.
The dependent 'value' may be marked 'nonescaping', which guarantees that the
lifetime dependence is statically enforceable. In this case, the compiler
must be able to follow all values forwarded from the dependent 'value', and
recognize all final (non-forwarded, non-escaping) use points. This implies
that `findPointerEscape` is false. A diagnostic pass checks that the
incoming SIL to verify that these use points are all initially within the
'base' lifetime. Regular 'mark_dependence' semantics ensure that
optimizations cannot violate the lifetime dependence after diagnostics.