Pack expressions take a series of argument values and bundle them together as a pack - much like how a tuple expression bundles argument expressions into a tuple.
Pack reification represents the operation that converts packs to tuples/scalar types in the AST. This is important since we want pack types in return positions to resolve to tuples contextually.
- Frontend: Implicitly import `_StringProcessing` when frontend flag `-enable-experimental-string-processing` is set.
- Type checker: Set a regex literal expression's type as `_StringProcessing.Regex<(Substring, DynamicCaptures)>`. `(Substring, DynamicCaptures)` is a temporary `Match` type that will help get us to an end-to-end working system. This will be replaced by actual type inference based a regex's pattern in a follow-up patch (soon).
- SILGen: Lower a regex literal expression to a call to `_StringProcessing.Regex.init(_regexString:)`.
- String processing runtime: Add `Regex`, `DynamicCaptures` (matching actual APIs in apple/swift-experimental-string-processing), and `Regex(_regexString:)`.
Upcoming:
- Build `_MatchingEngine` and `_StringProcessing` modules with sources from apple/swift-experimental-string-processing.
- Replace `DynamicCaptures` with inferred capture types.
With `-enable-experimental-string-processing`,
start lexing `'` delimiters as regex literals (this
is just a placeholder delimiter for now). The
contents of which gets passed to the libswift
library, which can return an error string to be
emitted, or null for success.
The libswift side isn't yet hooked up to the Swift
regex parser, so for now just emit a dummy
diagnostic for regexes starting with quantifiers.
If successful, build an AST node which will be
emitted as an implicit call to an
`init(_regexString:)` initializer of an in-scope
`Regex` decl (which will eventually be a known
stdlib decl).
This cleans up 90 instances of this warning and reduces the build spew
when building on Linux. This helps identify actual issues when
building which can get lost in the stream of warning messages. It also
helps restore the ability to build the compiler with gcc.
This implementation adds the debug info emission to
SILGenFunction::emitTemporaryAllocation() which may not be the optimal place to
do this. It may be better to change SILGen to unconditionally emit an
alloc_stack instead of relying on a temporary alloca to be requested.
rdar://75499821
This was a hack needed to let CSApply re-write
IUO-returning applies, and is no longer needed now
that we can directly perform the unwrapping when
needed.
Previously the declaration and definition of EndBorrowCleanup were both
within SILGenExpr.cpp. That prevented the usage of cleanups which end
borrow scopes within other files. Here, the declaration is moved to
Cleanup.h. The necessary changes are made to SILGenExpr.cpp to keep the
definition of member functions in place.
Remove the canonicalVararg parameter and
CanParamArrayRef wrapper. Almost none of the
callers want canonicalVararg, and the one that
does calls `getCanonicalType` on the result
anyway.
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
Use APIs for creating terminator results that handle forwarding
ownership consistently.
Add ManagedValue::forForwardedRValue(SILValue) to handle cleanups
consistently based on ownership forwarding.
Add SILGenBuilder::createForwardedTermResult(SILType type) for
creating termator results with the correct ownership and cleanups.
Add SILGenBuilder::createTermResult(SILType type, ValueOwnershipKind
ownership) that handles cleanup based on terminator result ownership.
Add SILGenBuilder::createOptionalSomeResult(SwitchEnumInst) so a lot
of code doesn't need to deal with unwrapping Optional types,
terminator results, and ownership rules.
Replace the existing "phi" APIs with a single
SILGenBuilder::createPhi(SILType, ValueOwnershipKind) that handles
cleanup based on phi ownership.
Phis and terminator results are fundamentally different and need to be handled differently everywhere. Remove the confusion where terminator results were generated with a "phi argument" API.
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
If the property referred to by the final component of a KeyPath is a
type that is considered uninhabited by the compiler (e.g. caseless enums),
we currently emit an unreachable code warning at the location of the KeyPath
expression. This warning is emitted by the NoReturnFolding pass of the SILOptimizer
when it checks the property getter function generated for the KeyPath. This
change fixes the issue by emitting keypath accessor functions with artificial
SILLocations so that the diagnostics pass will skip it as non-user-written code.
rdar://80415811
Start treating the null {Can}GenericSignature as a regular signature
with no requirements and no parameters. This not only makes for a much
safer abstraction, but allows us to simplify a lot of the clients of
GenericSignature that would previously have to check for null before
using the abstraction.
the enclosing context if the property wrapper is declared in a closure that
does not capture any generic parameters.
In this case, the enclosing closure won't have a generic signature, nor any
substitutions to forward when calling the property wrapper generator, which
previously caused an assertion failure when emitting the call because there
were no substitutions to use.
There are some crashes (for which we don't have a reproducer, unfortunately), which are caused by this change.
The good thing is that this change is not needed anymore, because it's handled by the more general eecb9fa975 "SILModule: track opened archetypes per function.".
The test case for this was added in the original commit (test/stdlib/KeyPath.swift), which is not reverted with this commit.
rdar://79415891
This commit essentially consistes of the following steps:
- Add a new code completion key path component that represents the code completion token inside a key path. Previously, the key path would have an invalid component at the end if it contained a code completion token.
- When type checking the key path, model the code completion token’s result type by a new type variable that is unrelated to the previous components (because the code completion token might resolve to anything).
- Since the code completion token is now properly modelled in the constraint system, we can use the solver based code completion implementation and inspect any solution determined by the constraint solver. The base type for code completion is now the result type of the key path component that preceeds the code completion component.
This resolves bugs where code completion was not working correctly if the key path’s type had a generic base or result type. It’s also nice to have moved another completion type over to the solver-based implementation.
Resolves rdar://78779234 [SR-14685] and rdar://78779335 [SR-14703]
Previously we were walking them once when visiting
the capture list, and then again as a part of the
pattern binding decl. Change the logic to only
visit them as a part of their pattern binding decl.
* [Distributed] Initial distributed checking
* [Distributed] initial types shapes and conform to DistributedActor
* [Distributed] Require Codable params and return types
* [Distributed] initial synthesis of fields and constructors
* [Distributed] Field and initializer synthesis
* [Distributed] Codable requirement on distributed funcs; also handle <T: Codable>
* [Distributed] handle generic type params which are Codable in dist func
[Distributed] conformsToProtocol after all
* [Distributed] Implement remote flag on actors
* Implement remote flag on actors
* add test
* actor initializer that sets remote flag
[Distributed] conformances getting there
* [Distributed] dont require async throws; cleanup compile tests
* [Distributed] do not synthesize default implicit init, only our special ones
* [Distributed] properly synth inits and properties; mark actorTransport as _distributedActorIndependent
Also:
- do not synthesize default init() initializer for dist actor
* [Distributed] init(transport:) designated and typechecking
* [Distributed] dist actor initializers MUST delegate to local-init
* [Distributed] check if any ctors in delegation call init(transport:)
* [Distributed] check init(transport:) delegation through many inits; ban invoking init(resolve:using:) explicitly
* [Distributed] disable IRGen test for now
* [Distributed] Rebase cleanups
* [Concurrent] transport and address are concurrent value
* [Distributed] introduce -enable-experimental-distributed flag
* rebase adjustments again
* rebase again...
* [Distributed] distributed functions are implicitly async+throws outside the actor
* [Distributed] implicitly throwing and async distributed funcs
* remove printlns
* add more checks to implicit function test
* [Distributed] resolve initializer now marks the isRemote actor flag
* [Distributed] distributedActor_destroy invoked instead, rather than before normal
* [Distributed] Generate distributed thunk for actors
* [distributed] typechecking for _remote_ functions existing, add tests for remote funcs
* adding one XFAIL'ed task & actor lifetime test
The `executor_deinit1` test fails 100% of the time
(from what I've seen) so I thought we could track
and see when/if someone happens to fix this bug.
Also, added extra coverage for #36298 via `executor_deinit2`
* Fix a memory issue with actors in the runtime system, by @phausler
* add new test that now passes because of patch by @phausler
See previous commit in this PR.
Test is based on one from rdar://74281361
* fix all tests that require the _remote_ function stubs
* Do not infer @actorIndependent onto `let` decls
* REVERT_ME: remove some tests that hacky workarounds will fail
* another flaky test, help build toolchain
* [Distributed] experimental distributed implies experimental concurrency
* [Distributed] Allow distributed function that are not marked async or throws
* [Distributed] make attrs SIMPLE to get serialization generated
* [Distributed] ActorAddress must be Hashable
* [Distributed] Implement transport.actorReady call in local init
* cleanup after rebase
* [Distributed] add availability attributes to all distributed actor code
* cleanup - this fixed some things
* fixing up
* fixing up
* [Distributed] introduce new Distributed module
* [Distributed] diagnose when missing 'import _Distributed'
* [Distributed] make all tests import the module
* more docs on address
* [Distributed] fixup merge issues
* cleanup: remove unnecessary code for now SIMPLE attribute
* fix: fix getActorIsolationOfContext
* [Distributed] cmake: depend on _concurrency module
* fixing tests...
* Revert "another flaky test, help build toolchain"
This reverts commit 83ae6654dd.
* remove xfail
* clenup some IR and SIL tests
* cleanup
* [Distributed] fix cmake test and ScanDependencies/can_import_with_map.swift
* [Distributed] fix flags/build tests
* cleanup: use isDistributed wherever possible
* [Distributed] don't import Dispatch in tests
* dont link distributed in stdlib unittest
* trying always append distributed module
* cleanups
* [Distributed] move all tests to Distributed/ directory
* [lit] try to fix lit test discovery
* [Distributed] update tests after diagnostics for implicit async changed
* [Distributed] Disable remote func tests on Windows for now
* Review cleanups
* [Distributed] fix typo, fixes Concurrency/actor_isolation_objc.swift
* [Distributed] attributes are DistributedOnly (only)
* cleanup
* [Distributed] cleanup: rely on DistributedOnly for guarding the keyword
* Update include/swift/AST/ActorIsolation.h
Co-authored-by: Doug Gregor <dgregor@apple.com>
* introduce isAnyThunk, minor cleanup
* wip
* [Distributed] move some type checking to TypeCheckDistributed.cpp
* [TypeCheckAttr] remove extra debug info
* [Distributed/AutoDiff] fix SILDeclRef creation which caused AutoDiff issue
* cleanups
* [lit] remove json import from lit test suite, not needed after all
* [Distributed] distributed functions only in DistributedActor protocols
* [Distributed] fix flag overlap & build setting
* [Distributed] Simplify noteIsolatedActorMember to not take bool distributed param
* [Distributed] make __isRemote not public
* [Distributed] Fix availability and remove actor class tests
* [actorIndependent] do not apply actorIndependent implicitly to values where it would be illegal to apply
* [Distributed] disable tests until issue fixed
Co-authored-by: Dario Rexin <drexin@apple.com>
Co-authored-by: Kavon Farvardin <kfarvardin@apple.com>
Co-authored-by: Doug Gregor <dgregor@apple.com>
* Revert "[Distributed] disable tests until issue fixed"
This reverts commit 0a04278920.
* Revert "[Distributed] Initial `distributed` actors and functions and new module (#37109)"
This reverts commit 814ede0cf3.
* [Distributed] Initial distributed checking
* [Distributed] initial types shapes and conform to DistributedActor
* [Distributed] Require Codable params and return types
* [Distributed] initial synthesis of fields and constructors
* [Distributed] Field and initializer synthesis
* [Distributed] Codable requirement on distributed funcs; also handle <T: Codable>
* [Distributed] handle generic type params which are Codable in dist func
[Distributed] conformsToProtocol after all
* [Distributed] Implement remote flag on actors
* Implement remote flag on actors
* add test
* actor initializer that sets remote flag
[Distributed] conformances getting there
* [Distributed] dont require async throws; cleanup compile tests
* [Distributed] do not synthesize default implicit init, only our special ones
* [Distributed] properly synth inits and properties; mark actorTransport as _distributedActorIndependent
Also:
- do not synthesize default init() initializer for dist actor
* [Distributed] init(transport:) designated and typechecking
* [Distributed] dist actor initializers MUST delegate to local-init
* [Distributed] check if any ctors in delegation call init(transport:)
* [Distributed] check init(transport:) delegation through many inits; ban invoking init(resolve:using:) explicitly
* [Distributed] disable IRGen test for now
* [Distributed] Rebase cleanups
* [Concurrent] transport and address are concurrent value
* [Distributed] introduce -enable-experimental-distributed flag
* rebase adjustments again
* rebase again...
* [Distributed] distributed functions are implicitly async+throws outside the actor
* [Distributed] implicitly throwing and async distributed funcs
* remove printlns
* add more checks to implicit function test
* [Distributed] resolve initializer now marks the isRemote actor flag
* [Distributed] distributedActor_destroy invoked instead, rather than before normal
* [Distributed] Generate distributed thunk for actors
* [distributed] typechecking for _remote_ functions existing, add tests for remote funcs
* adding one XFAIL'ed task & actor lifetime test
The `executor_deinit1` test fails 100% of the time
(from what I've seen) so I thought we could track
and see when/if someone happens to fix this bug.
Also, added extra coverage for #36298 via `executor_deinit2`
* Fix a memory issue with actors in the runtime system, by @phausler
* add new test that now passes because of patch by @phausler
See previous commit in this PR.
Test is based on one from rdar://74281361
* fix all tests that require the _remote_ function stubs
* Do not infer @actorIndependent onto `let` decls
* REVERT_ME: remove some tests that hacky workarounds will fail
* another flaky test, help build toolchain
* [Distributed] experimental distributed implies experimental concurrency
* [Distributed] Allow distributed function that are not marked async or throws
* [Distributed] make attrs SIMPLE to get serialization generated
* [Distributed] ActorAddress must be Hashable
* [Distributed] Implement transport.actorReady call in local init
* cleanup after rebase
* [Distributed] add availability attributes to all distributed actor code
* cleanup - this fixed some things
* fixing up
* fixing up
* [Distributed] introduce new Distributed module
* [Distributed] diagnose when missing 'import _Distributed'
* [Distributed] make all tests import the module
* more docs on address
* [Distributed] fixup merge issues
* cleanup: remove unnecessary code for now SIMPLE attribute
* fix: fix getActorIsolationOfContext
* [Distributed] cmake: depend on _concurrency module
* fixing tests...
* Revert "another flaky test, help build toolchain"
This reverts commit 83ae6654dd.
* remove xfail
* clenup some IR and SIL tests
* cleanup
* [Distributed] fix cmake test and ScanDependencies/can_import_with_map.swift
* [Distributed] fix flags/build tests
* cleanup: use isDistributed wherever possible
* [Distributed] don't import Dispatch in tests
* dont link distributed in stdlib unittest
* trying always append distributed module
* cleanups
* [Distributed] move all tests to Distributed/ directory
* [lit] try to fix lit test discovery
* [Distributed] update tests after diagnostics for implicit async changed
* [Distributed] Disable remote func tests on Windows for now
* Review cleanups
* [Distributed] fix typo, fixes Concurrency/actor_isolation_objc.swift
* [Distributed] attributes are DistributedOnly (only)
* cleanup
* [Distributed] cleanup: rely on DistributedOnly for guarding the keyword
* Update include/swift/AST/ActorIsolation.h
Co-authored-by: Doug Gregor <dgregor@apple.com>
* introduce isAnyThunk, minor cleanup
* wip
* [Distributed] move some type checking to TypeCheckDistributed.cpp
* [TypeCheckAttr] remove extra debug info
* [Distributed/AutoDiff] fix SILDeclRef creation which caused AutoDiff issue
* cleanups
* [lit] remove json import from lit test suite, not needed after all
* [Distributed] distributed functions only in DistributedActor protocols
* [Distributed] fix flag overlap & build setting
* [Distributed] Simplify noteIsolatedActorMember to not take bool distributed param
* [Distributed] make __isRemote not public
Co-authored-by: Dario Rexin <drexin@apple.com>
Co-authored-by: Kavon Farvardin <kfarvardin@apple.com>
Co-authored-by: Doug Gregor <dgregor@apple.com>
An actor can have @objc members, but not if those members are "actor-isolated",
i.e., not accessible from outside the actor according to the fundamental design
of actors. For example, a sync function is considered actor-isolated since it
needs special protection, so it cannot be @objc.
But, we now have special capabilities to treat sync actor functions as
implicitly async at use-sites outside of the actor. Does this mean that we can
now allow sync actor functions to be @objc? No. Because the implicitly-async
functionality does not extend to the world of ObjC: it simply would not be
feasible to implement it there.
Thus, I've added some extra regression-test coverage to handle these cases,
and clarified the assertion here to not confuse others.
Refactor SILGen's ApplyOptions into an OptionSet, add a
DoesNotAwait flag to go with DoesNotThrow, and sink it
all down into SILInstruction.h.
Then, replace the isNonThrowing() flag in ApplyInst and
BeginApplyInst with getApplyOptions(), and plumb it
through to TryApplyInst as well.
Set the flag when SILGen emits a sync call to a reasync
function.
When set, this disables the SIL verifier check against
calling async functions from sync functions.
Finally, this allows us to add end-to-end tests for
rdar://problem/71098795.
The strategy for implementing them is integrated with the
PathComponent infrastructure in SILGen in order to correctly
support mixtures of chained accesses and forced optionals, etc.
The actor isolation information is only piped into LValues from
the expressions that might be marked implicitly-async.
This is kind of complicated, because an enum can be trivial for one case and not trivial for another case. We need to check at which parts of the function we can prove that the enum does (or could) have a trivial case. In such a branch, it's not required in SIL to destroy the enum location.
Also, document the rules and requirements for enum memory locations in SIL.rst.
rdar://73770085
implicitly-async calls are calls to synchronous
actor-isolated functions. Synchronous functions
cannot perform hop_to_executor, so implicitly
async calls have the convention that the caller
is responsible for switching to the right
executor prior to entering the actor-isolated
callee.
It follows naturally that the caller must then
switch back to the appropriate executor after
the implicitly-async call completed.
Now, if the caller is not isolated to a
_specific_ actor, then we are (currently)
_not_ emitting a hop to go back to the
caller's executor, because that caller's
executor is unspecified (and currently not
accessable in SIL). This behavior may change
in the future; tracked in rdar://71905765