While the intent behind this functor was noble, it has grown in complexity
considerably over the years, and it seems to be nothing but a source of
crashes in practice. I don't want to deal with it anymore, so I've decided
to just subsume all usages with LookUpConformanceInModule instead.
In OSSA, the result of an `unchecked_bitwise_cast` must immediately be
copied or `unchecked_bitwise_cast`'d again. In particular, it is not
permitted to borrow it. For example, the result can't be borrowed for
the purpose of performinig additional projections (`struct_extract`,
`tuple_extract`) on the borrowed value. Consequently, we cannot promote
an address if such a promotion would result in such a pattern. That
means we can't promote an address `%addr` which is used like
`struct_element_addr(unchecked_addr_cast(%addr))` or
`tuple_element_addr(unchecked_addr_cast(%addr))`. We can still promote
`unchecked_addr_cast(unchecked_addr_cast(%addr))`.
In ownership-lowered SIL, this doesn't apply and we can still promote
address with such projections.
rdar://153693915
This results in wrong argument/return calling conventions.
First, the method call must be specialized. Only then the call can be de-virtualized.
Usually, it's done in this order anyway, because the `class_method` instruction is located before the `apply`.
But when inlining functions, the order (in the worklist) can be the other way round.
Fixes a compiler crash.
rdar://154631438
Narrowly fix a long-standing bug where destroy_addrs would be hoisted
into read access scopes, leaving the scope as a read despite the fact
that it modifies memory. This is a problem for utilities which expect
access scopes to provide correct summaries. Do this by refusing to fold
into access scopes which are marked `[read]`.
In a follow-up, we can reenable this folding, promoting each access
scope to a modify. Doing so requires checking that there are no access
scopes which overlap with any of the access scopes which would be
promoted to modify.
rdar://154407327
This pass replaces `alloc_box` with `alloc_stack` if the box is not escaping.
The original implementation had some limitations. It could not handle cases of local functions which are called multiple times or even recursively, e.g.
```
public func foo() -> Int {
var i = 1
func localFunction() { i += 1 }
localFunction()
localFunction()
return i
}
```
The new implementation (done in Swift) fixes this problem with a new algorithm.
It's not only more powerful, but also simpler: the new pass has less than half lines of code than the old pass.
The pass is invoked in the mandatory pipeline and later in the optimizer pipeline.
The new implementation provides a module-pass for the mandatory pipeline (whereas the "regular" pass is a function pass).
This is required because the mandatory pass needs to remove originals of specialized closures, which cannot be done from a function-pass.
In the old implementation this was done with a hack by adding a semantic attribute and deleting the function later in the pipeline.
I still kept the sources of the old pass for being able to bootstrap the compiler without a host compiler.
rdar://142756547
Ideally we'd be able to use the llvm interleave2 and deinterleave2
intrinsics instead of adding these, but deinterleave currently isn't
available from Swift, and even if you hack that in, the codegen from
LLVM is worse than what shufflevector produces for both x86 and arm. So
in the medium-term we'll use these builtins, and hope to remove them in
favor of [de]interleave2 at some future point.
* re-implement the pass in swift
* support alloc_stack liveranges which span over multiple basic blocks
* support `load`-`store` pairs, copying from the alloc_stack (in addition to `copy_addr`)
Those improvements help to reduce temporary stack allocations, especially for InlineArrays.
rdar://151606382
We are going to need to add more flags to the various checked cast
instructions. Generalize the CastingIsolatedConformances bit in all of
these SIL instructions to an "options" struct that's easier to extend.
Precursor to rdar://152335805.
A destroy of an `init_enum_data_addr` is not equivalent to a destroy of
the whole enum's address. Treat such destroys just like destroys of
`struct_element_addr`s are treated: by bailing out.
rdar://152431332
If there is a "constant" enum argument to a synthesized enum comparison, we can always inline it, because most of it will be constant folded anyway.
This ensures the compiler is not creating terrible code for very simple enum comparisons, like
```
if someEnum == .someCase {
...
}
```
rdar://85677499
Implements SE-0460 -- the non-underscored version of @specialized.
It allows to specify "internal" (not abi affecting) specializations.
rdar://150033316
It is like `zeroInitializer`, but does not actually initialize the memory.
It only indicates to mandatory passes that the memory is going to be initialized.
Beside cleaning up the source code, the motivation for the translation into Swift is to make it easier to improve the pass for some InlineArray specific optimizations (though I'm not sure, yet if we really need those).
Also, the new implementation doesn't contain the optimize-store-into-temp optimization anymore, because this is covered by redundant load elimination.
The SimplifyCFG and LoopRotate passes result in verification failures
when built in a compiler that is not built with Swift sources enabled.
Fixes: rdar://146357242
When DCE deletes instructions as dead, if the instruction ends one of
its operands lifetimes, it must insert a compensating lifetime end.
When the def block of the value and the parent block of the instruction
are different, it uses lifetime completion. Lifetime completion relies
on complete liveness, which doesn't and can't exist for values with
pointer escapes. The result is ending lifetimes too early.
Avoid this scenario by marking such instructions live.
In the fullness of time, it may be possible to track the deleted
instruction's "location" even in the face of deletions of adjacent
instructions and parent blocks and to insert the lifetime end at that
location.
rdar://149007151
When performing a dynamic cast to an existential type that satisfies
(Metatype)Sendable, it is unsafe to allow isolated conformances of any
kind to satisfy protocol requirements for the existential. Identify
these cases and mark the corresponding cast instructions with a new flag,
`[prohibit_isolated_conformances]` that will be used to indicate to the
runtime that isolated conformances need to be rejected.
The body of a function has to be re-analyzed for every call
site of the function, which is very expensive and if the
body is not changed would produce the same result.
This takes about ~10% from swift-syntax overall build time
in release configuration.
Instructions in a block, which is moved, must not use any (non-trivial) value because we don't do liveness analysis.
When moving a block, there is no guarantee that the operand value is still alive at the new location.
Fixes an ownership violation error
rdar://146630743
TempLValueOpt eliminates copies from a temporary to destination and
supports hoisting projections of the destination.
An enum is fully initialized with the pair init_enum_data_addr and
inject_enum_addr. Calling destroy_addr only before inject_enum_addr
can cause a runtime crash.
This optimization can eliminate copy_addr and hoist init_enum_data_addr
such that enum is not fully initialized before it's use.
Disable this case for now.
Fixes rdar://145941433
To correctly do this optimization we have to find the corresponding inject_enum_addr
and hoist it as well or ensure the source is not used until fully initialized by inject_enum_addr.
StackAllocationPromoter::pruneAllocStackUsage substitutes loads/stores of alloc_stack
with values. For some reason isLoadFromStack was bailing out for load_borrows with
reborrows leaving them to be fixed up by fixBranchesAndUses which uses live in value
from predecessors for substitution which is obviosly incorrect the block containing
the load_borrow has a store before it.
Fixes rdar://145834542
In C++, we always expected to invoke the dtor for moved-from objects.
This is not the case for swift. Fortunately, @inCxx calling convention
is already expressing that the caller supposed to destroy the object.
This fixes the missing dtor calls when calling C++ functions taking
rvalue references. Fixes#77894.
rdar://140786022