This attribute will, in the near future, be used to inform IRGen that a nominal type that conforms to such protocol must have its type metadata always emitted into the binary, regardless of whether it is used/public.
Trivial conflict caused by the line above the
`IGM.constructInitialFnAttributes` change in `lib/IRGen/GenDecl.cpp`
having an extra argument passed in rebranch (due to the new LLVM API).
Specifically this means that rather than always being owned, we now have owned
and guaranteed versions of copyable_to_moveonlywrapper. Similar to
moveonlywrapper_to_copyable, one chooses which variant one gets by using
specific SILBuilder APIs:
create{Owned,Guaranteed}CopyableToMoveOnlyWrapperValueInst. It is still
forwarding and the rest of the forwarding APIs work as expected except that the
forwarding ownership is fixed (and an assertion will result if one attempts to
do so).
NOTE: It is assumed that trivial operands are always passed to the owned
variant.
Local types are not ABI, and the only time we care about the mangling here is
when we look them up using the DWARF mangling in debug info, which doesn't
respect @_originallyDefinedIn either.
Fixes https://github.com/apple/swift/issues/59773.
Use only the SWIFT_COMPILER_VERSION macro to check for swiftmodules
being written by the same compiler that reads it. In practice, it's the
macro used for release builds of the compiler.
rdar://96868333
Since I am beginning to prepare for adding real move only types to the language,
I am renaming everything that has to do with copyable types "move only wrapped"
values instead of move only. The hope is this reduces/prevents any confusion in
between the two.
The ObjCMethodLookupTable for protocols was not being serialized and rebuilt on load, so NominalTypeDecl::lookupDirect() on selectors was not working correctly for deserialized types. Correct this oversight.
When a synchronous, actor-isolated declaration witnesses an
asynchronous, not-similarly-isolated requirement, emit an actor hop
within the witness thunk to ensure that we properly enter the context
of the actor.
Fixes#58517 / rdar://92881539.
These instructions have the following attributes:
1. copyably_to_moveonlywrapper takes in a 'T' and maps it to a '@moveOnly
T'. This is semantically used when initializing a new moveOnly binding from a
copyable value. It semantically destroys its input @owned value and returns a
brand new independent @owned @moveOnly value. It also is used to convert a
trivial copyable value with type 'Trivial' into an owned non-trivial value of
type '@moveOnly Trivial'. If one thinks of '@moveOnly' as a monad, this is how
one injects a copyable value into the move only space.
2. moveonlywrapper_to_copyable takes in a '@moveOnly T' and produces a new 'T'
value. This is a 'forwarding' instruction where at parse time, we only allow for
one to choose it to be [owned] or [guaranteed].
* moveonlywrapper_to_copyable [owned] is used to signal the end of lifetime of
the '@moveOnly' wrapper. SILGen inserts these when ever a move only value has
its ownership passed to a situation where a copyable value is needed. Since it
is consuming, we know that the no implicit copy checker will ensure that if we
need a copy for it, the program will emit a diagnostic.
* moveonlywrapper_to_copyable [guaranteed] is used to pass a @moveOnly T value
as a copyable guaranteed parameter with type 'T' to a function. In the case of
using no-implicit-copy checking this is always fine since no-implicit-copy is a
local pattern. This would be an error when performing no escape
checking. Importantly, this instruction also is where in the case of an
@moveOnly trivial type, we convert from the non-trivial representation to the
trivial representation.
Some important notes:
1. In a forthcoming commit, I am going to rebase the no implicit copy checker on
top of these instructions. By using '@moveOnly' in the type system, we can
ensure that later in the SIL pipeline, we can have optimizations easily ignore
the code.
2. Be aware of is that due to SILGen only emitting '@moveOnly T' along immediate
accesses to the variable and always converts to a copyable representation when
calling other code, we can simply eliminate from the IR all moveonly-ness from
the IR using a lowering pass (that I am going to upstream). In the evil scheme
we are accomplishing here, we perform lowering of trivial values right after
ownership lowering and before diagnostics to simplify the pipeline.
On another note, I also fixed a few things in SILParsing around getASTType() vs
getRawASTType().
Only production compilers should apply the per-SDK restriction on
loading swiftmodules. Use the "is the compiler tagged" information over
a release build to align with the other main swiftmodule loading
restriction accepting only swiftmodules built by the same tag.
Also use an env var SWIFT_DEBUG_FORCE_SWIFTMODULE_PER_SDK to enable
testing this feature in any compilers.
Change the way swiftmodules built against a different SDK than their
clients are rejected. This makes them silently ignored when the module
can be rebuilt from their swiftinterface, instead of reporting a hard
error.
rdar://93257769