If this function is inlined, the optimizer can shrink the lifetime of the `args` parameter. This would deallocate the passed arguments (e.g. `NSString`s) before the are used in the closure.
Support adding safe wrappers for APIs returning std::span depending on
the this object. This also fixes an issue for APIs with 0 parameters.
rdar://139074571
This PR adds basic support for storing lifetime dependence information,
transform Span return types, and generate lifetime annotations.
rdar://139074571
Move the backtracing code into a new Runtime module. This means renaming
the Swift Runtime's CMake target because otherwise there will be a name
clash.
rdar://124913332
Doc comments for DiscontiguousSlice, MutableCollection, RangeSet, and
RangeReplaceableCollection all refer to a Collection method subranges(where:)
which is intended to return a RangeSet of matching ranges. I believe this is
likely an old or formerly-contemplated spelling of the method now known as
indices(where:). This commit changes "subranges" to "indices".
* Import __counted_by for function return values
Instead of simply passing a parameter index to _SwiftifyInfo, the
_SwiftifyExpr enum is introduced. It currently has two cases:
- .param(index: Int), corresponding to the previous parameter index
- .return, corresponding to the function's return value.
ClangImporter is also updated to pass this new information along to
_SwiftifyImport, allowing overloads with buffer pointer return types to
be generated. The swiftified return values currently return Span when
the return value is marked as nonescaping, despite this not being sound.
This is a bug that will be fixed in the next commit, as the issue is
greater than just for return values.
* Fix Span variant selection
There was an assumption that all converted pointers were either
converted to Span-family pointers, or UnsafeBufferPointer-family
pointers. This was not consistently handled, resulting in violating the
`assert(nonescaping)` assert when the two were mixed. This patch removes
the Variant struct, and instead each swiftified pointer separately
tracks whether it should map to Span or UnsafeBufferPointer.
This also fixes return pointers being incorrectly mapped to Span when
marked as nonescaping.
In the documentation for the `isLess(than:)` and `isLessThanOrEqualTo(_:)`
methods, a code sample isn't being formatted correctly due to it directly
following an unordered list. This change adds an additional message that
introduces the code sample, separating it from the list and allowing
the correct formatting to be applied.
This is a preliminary PR to transform nonescaping std::span parameters
to Swift's Span type in safe wrappers. To hook this up with
ClangImporter, we will need generalize the noescape attribute to
non-pointer types (PR is already in review). To transform potentially
escaping spans and spans in the return position, a follow-up PR will
add lifetime annotation support. This is a building block towards
rdar://139074571.
* Make pointer bounds non-experimental
* Rename @PointerBounds to @_SwiftifyImport
* Rename filenames containing PointerBounds
* Add _PointerParam exception to stdlib ABI test
* Add _PointerParam to stdlib API changes
* Rename _PointerParam to _SwiftifyInfo
Two are fixes needed in most of the `RawSpan` and `Span` initializers. For example:
```
let baseAddress = buffer.baseAddress
let span = RawSpan(_unchecked: baseAddress, byteCount: buffer.count)
// As a trivial value, 'baseAddress' does not formally depend on the
// lifetime of 'buffer'. Make the dependence explicit.
self = _overrideLifetime(span, borrowing: buffer)
```
Fix#1. baseAddress needs to be a variable
`span` has a lifetime dependence on `baseAddress` via its
initializer. Therefore, the lifetime of `baseAddress` needs to include the call
to `_overrideLifetime`. The override sets the lifetime dependency of its result,
not its argument. It's argument still needs to be non-escaping when it is passed
in.
Alternatives:
- Make the RawSpan initializer `@_unsafeNonescapableResult`.
Any occurrence of `@_unsafeNonescapableResult` actually signals a bug. We never
want to expose this annotation.
In addition to being gross, it would totally disable enforcement of the
initialized span. But we really don't want to side-step `_overrideLifetime`
where it makes sense. We want the library author to explicitly indicate that
they understand exactly which dependence is unsafe. And we do want to
eventually expose the `_overrideLifetime` API, which needs to be well
understood, supported, and tested.
- Add lifetime annotations to a bunch of `UnsafePointer`-family APIs so the
compiler can see that the resulting pointer is derived from self, where self is
an incoming `Unsafe[Buffer]Pointer`. This would create a massive lifetime
annotation burden on the `UnsafePointer`-family APIs, which don't really have
anything to do with lifetime dependence. It makes more sense for the author of
`Span`-like APIs to reason about pointer lifetimes.
Fix#2. `_overrideLifetime` changes the lifetime dependency of span to be on an
incoming argument rather than a local variable.
This makes it legal to escape the function (by assigning it to self). Remember
that self is implicitly returned, so the `@lifetime(borrow buffer)` tells the
compiler that `self` is valid within `buffer`'s borrow scope.