Rather than parsing the call arguments (or similar, e.g., subscript)
as a parenthesized expression or tuple, then later reworking that
ParenExpr/TupleExpr if a trailing closure comes along, then digging
through that ParenExpr/TupleExpr to pull out the arguments and
trailing closure... just parse the expression list and trailing
closure together, then directly form the appropriate AST node with
arguments/labels/label locations/trailing closure.
Fixes rdar://problem/19804707, which is an issue where trailing
closures weren't working with unresolved member expressions (e.g.,
".foo {... }"), and is a stepping-stone to SE-0111.
* Migrate from `UnsafePointer<Void>` to `UnsafeRawPointer`.
As proposed in SE-0107: UnsafeRawPointer.
`void*` imports as `UnsafeMutableRawPointer`.
`const void*` imports as `UnsafeRawPointer`.
Occurrences of `UnsafePointer<Void>` are replaced with UnsafeRawPointer.
* Migrate overlays from UnsafePointer<Void> to UnsafeRawPointer.
This requires explicit memory binding in several places,
particularly in NSData and CoreAudio.
* Fix a bunch of test cases for Void->Raw migration.
* qsort takes IUO values
* Bridge `Unsafe[Mutable]RawPointer as `void [const] *`.
* Parse #dsohandle as UnsafeMutableRawPointer
* Update a bunch of test cases for Void->Raw migration.
* Trivial fix for the SceneKit test case.
* Add an UnsafeRawPointer self initializer.
This is unfortunately necessary for assignment between types imported from C.
* Tiny simplification of the initializer.
and provide a fix-it to move it to the new location as referenced
in SE-0081.
Fix up a few stray places in the standard library that is still using
the old syntax.
Update any ./test files that aren't expecting the new warning/fix-it
in -verify mode.
While investigating what I thought was a new crash due to this new
diagnostic, I discovered two sources of quite a few compiler crashers
related to unterminated generic parameter lists, where the right
angle bracket source location was getting unconditionally set to
the current token, even though it wasn't actually a '>'.
The reverts part of my previous patch. Removing the operators is too much of a
performance penalty to take. The difference is that the Strideable operators are
not transparent.
I still need to remove the UnsafeRawPointer operators, so -Onone performance
will be bad in some cases until this is fixed:
<rdar://problem/27513184> [perf] Strideable operators are not transparent. This is a huge -Onone performance penalty.
pattern matches. In the case of an 'if let' with an explicit type, produce a
Taylor'd diagnostic that rewrites the condition to the right type.
This wraps up:
<rdar://problem/27457457> [Type checker] Diagnose unsavory optional injections
common standard library operators. This is progress towards:
<rdar://problem/27457457> [Type checker] Diagnose unsavory optional injections
but there is more work to be done here.
Generic versions of these functions are provided by Strideable.
This is required for SE-0107: UnsafeRawPointer. Otherwise, the presence
of non-generic operator overloads will conflict with existing operators
on String.
* Add UnsafeRawPointer type and API.
As proposed in SE-0107: UnsafeRawPointer.
https://github.com/apple/swift-evolution/blob/master/proposals/0107-unsaferawpointer.md
The fundamental difference between Unsafe[Mutable]RawPointer and
Unsafe[Mutable]Pointer<Pointee> is simply that the former is used for "untyped"
memory access, and the later is used for "typed" memory access. Let's refer to
these as "raw pointers" and "typed pointers". Because operations on raw pointers
access untyped memory, the compiler cannot make assumptions about the underlying
type of memory and must be conservative. With operations on typed pointers, the
compiler may make strict assumptions about the type of the underlying memory,
which allows more aggressive optimization.
Memory can only be accessed by a typed pointer when it is currently
bound to the Pointee type. Memory can be bound to type `T` via:
- `UnsafePointer<T>.allocate(capacity: n)`
- `UnsafePointer<Pointee>.withMemoryRebound(to: T.self, capacity: n) {...}`
- `UnsafeMutableRawPointer.initializeMemory(as: T.self, at: i, count: n, to: x)`
- `UnsafeMutableRawPointer.initializeMemory(as: T.self, from: p, count: n)`
- `UnsafeMutableRawPointer.moveInitializeMemory(as: T.self, from: p, count: n)`
- `UnsafeMutableRawPointer.bindMemory(to: T.self, capacity: n)`
Mangle UnsafeRawPointer as predefined substitution 'Sv' for Swift void
pointer ([urp] are taken).
* UnsafeRawPointer minor improvements.
Incorporate Dmitri's feedback.
Properly use a _memmove helper.
Add load/storeBytes alignment precondition checks.
Reword comments.
Demangler tests.
* Fix name mangling test cases.
* Fix bind_memory specialization.
This is the hack that has been used to reject things like:
var i: Int = ...
if i == nil { }
in the past.
The hack is inconsistent with normal treatment of mixed optional &
non-optional operands, and will be replaced with a warning instead of
treating it as a failure to type check.
There is still a case that we still fail type checking on -
Unsafe*Pointer<> compares to nil. That will be addressed by a separate
commit.
The new warning will be addressed by rdar://problem/27457457. When the
new warnings are updated the test cases modified here will again need to
be updated based on the text of the new warning.
This reverts commit dc24c2bd34.
Turns out Chris fixed the build but when I was looking at the bots, his fix had
not been tested yet, so I thought the tree was still red and was trying to
revert to green.
This removes conformance of DarwinBool and ObjCBool to the Boolean protocol,
and makes the &&/||/! operators be concrete w.r.t. Bool instead of abstract
on Boolean.
This fixes some outstanding bugs w.r.t diagnostics, but exposes some cases
where an existing diagnostic is not great. I'll fix that in a later patch
(tracked by rdar://27391581).
change includes both the necessary protocol updates and the deprecation
warnings
suitable for migration. A future patch will remove the renamings and
make this
a hard error.
along with recent policy changes:
- For expression types that are not specifically handled, make sure to
produce a general "unused value" warning, catching a bunch of unused
values in the testsuite.
- For unused operator results, diagnose them as uses of the operator
instead of "calls".
- For calls, mutter the type of the result for greater specificity.
- For initializers, mutter the type of the initialized value.
- Look through OpenExistentialExpr's so we can handle protocol member
references propertly.
- Look through several other expressions so we handle @discardableResult
better.
as a failure to convert the individual operand, since the operator
is likely conceptually generic in some way and the choice of any
specific overload is probably arbitrary.
Since we now fall back to a better-informed diagnostics point, take
advantage of this to generate a specialized diagnostic when trying to
compare values of function type with ===.
Fixes rdar://25666129.
This reverts commit 073f427942,
i.e. it reapplies 35ba809fd0 with a
test fix to expect an extra note in one place.
as a failure to convert the individual operand, since the operator
is likely conceptually generic in some way and the choice of any
specific overload is probably arbitrary.
Since we now fall back to a better-informed diagnostics point, take
advantage of this to generate a specialized diagnostic when trying to
compare values of function type with ===.
Fixes rdar://25666129.