Now look through other opaque return types that appear in the
underlying type. This catches various forms of recursion that
otherwise would cause a SILGen or SILOptimizer crash.
- Fixes rdar://82992151.
The implementation of Knuth-Bendix completion has had a subtle
bookkeeping bug since I first wrote the code in 2021.
It is possible for two rules to overlap in more than one position,
but the ResolvedOverlaps set was a set of pairs (i, j), where
i and j are the index of the two rules. So overlaps other than
the first were not considered. Fix this by changing ResolvedOverlaps
to a set of triples (i, j, k), where k is the position in the
left-hand side of the first rule.
The end result is that we would incorrectly accept the protocol M3
shown in the test case. I'm pretty sure the monoid that M3 encodes
does not have a complete presentation over any alphabet, so of
course it should not be accepted here.
The concrete nesting limit, which defaults to 30, catches
things like A == G<A>. However, with something like
A == (A, A), you end up with an exponential problem size
before you hit the limit.
Add two new limits.
The first is the total size of the concrete type, counting
all leaves, which defaults to 4000. It can be set with the
-requirement-machine-max-concrete-size= frontend flag.
The second avoids an assertion in addTypeDifference() which
can be hit if a certain counter overflows before any other
limit is breached. This also defaults to 4000 and can be set
with the -requirement-machine-max-type-differences= frontend flag.
This can return ErrorType if the AST is invalid.
A handful of callers handle the ErrorType result, but most don't,
blindly assuming the result is always a nominal type. This resulted
in a crash in at least one test case.
Lift the burden from callers by always returning a nominal type here.
The proposal states that this should work, but this was never
implemented:
protocol P<A> {
associatedtype A
}
struct S: P<Int> {}
- Fixes https://github.com/swiftlang/swift/issues/62906.
- Fixes rdar://91842338.
getContextSubstitutionMap() didn't handle the case where getAnyNominal()
returns a ProtocolDecl. This should not take the "fast path", which is
only suitable for concrete nominals.
This manifested as a crash-on-invalid -- the user probably meant to write
"T.Value: Collection" rather than "T.Value == Collection".
Fixes rdar://151479861.
Enhance the logic in `applyInverses` to also take into account same-type constraints spelled in
the generic signature, so that same-type-constraining a type parameter to a type that is itself
not `Copyable` or `Escapable` suppresses the default application of those constraints on the
type parameter. Fixes rdar://147757973.
`extension G<Int>` introduces a same-type requirement, and
this isn't supported for variadic generic types yet.
Make sure we pass a valid source location here to diagnose
instead of dropping the error.
- Fixes https://github.com/apple/swift/issues/70432
- Fixes rdar://119613080
In the below, 'Self.A.A' is not a type parameter; rather, since
'Self.A' is concretely known to be 'S', we resolve it as 'S.A',
which performs a name lookup and finds the concrete type alias 'A':
public struct S {
public typealias A = Int
}
public protocol P {
typealias A = S
}
public struct G<T> {}
public protocol Q: P {
typealias B = G<Self.A.A>
}
This is fine, but such a type alias should not participate in
the rewrite system. Let's exclude them like any other invalid
requirement.
The type alias itself is not an error; however, it is an error
to use it from a 'where' clause requirement. This is not
diagnosed yet, though.
Fixes rdar://136686001.
https://github.com/swiftlang/swift/pull/72659 turned out to have some
source compatibility fallout that we need to fix. Instead of introducing
yet another brittle compatibility hack, stop emitting errors about a
missing `any` altogether until a future language mode.
Besides resolving the compatibility issue, this will encourage
developers to adopt any sooner and grant us ample time to gracefully
address any remaining bugs before the source compatibility burden
resurfaces.
A subsequent commit adds a diagnostic group that will allow users to
escalate these warnings to errors with `-Werror ExistentialAny`.
We can't unconditionally skip the conformance check if the type contains type
parameters; instead, we only want to skip it in the structural resolution
stage. In interface resolution stage, we proceed by mapping the type into
the generic environment first.
As specified by the SE-0446 acceptance, extensions that declare a type's
conditional `Copyable` or `Escapable` ability must reiterate explicitly all
of the `Copyable` and/or `Escapable` requirements, whether required or not
required (by e.g. `~Copyable`) that were suppressed in the original
type declaration.
This was never used to generate a .swiftinterface, so can be safely removed. It
was used to guard compiler fixes that might break older .swiftinterface
files. Now, we guard the same fixes by checking the source file type.
Find all the usages of `--enable-experimental-feature` or
`--enable-upcoming-feature` in the tests and replace some of the
`REQUIRES: asserts` to use `REQUIRES: swift-feature-Foo` instead, which
should correctly apply to depending on the asserts/noasserts mode of the
toolchain for each feature.
Remove some comments that talked about enabling asserts since they don't
apply anymore (but I might had miss some).
All this was done with an automated script, so some formatting weirdness
might happen, but I hope I fixed most of those.
There might be some tests that were `REQUIRES: asserts` that might run
in `noasserts` toolchains now. This will normally be because their
feature went from experimental to upcoming/base and the tests were not
updated.
Use the `%target-swift-5.1-abi-triple` substitution to compile the tests for
deployment to the minimum OS versions required for use of opaque types, instead
of disabling availability checking.
Use the `%target-swift-5.1-abi-triple` substitution to compile the tests for
deployment to the minimum OS versions required for use of _Concurrency APIs,
instead of disabling availability checking.
We don't really want to support this, at least not yet, but there
are ways to sneak it past the diagnostic that are hard to close.
Fixes rdar://problem/135348472.
If location (member) isn't mutable in the current context
or there are other problems at this location, increase impact
of the fix since it compounds the problem.
Some editors use diagnostics from SourceKit to replace build issues. This causes issues if the diagnostics from SourceKit are formatted differently than the build issues. Make sure they are rendered the same way, removing most uses of `DiagnosticsEditorMode`.
To do so, always emit the `add stubs for conformance` note (which previously was only emitted in editor mode) and remove all `; add <something>` suffixes from notes that state which requirements are missing.
rdar://129283608
Attempting to bypass the compiler and access runtime functions directly has
a long history of breaking in hard-to-predict ways, and there's usually a better
way. Put up a warning to try to flush out misuses of runtime functions to see
if we can turn this into an error.