Different tests used different os checks for importing Darwin, Glibc and
MSVCRT. This commit use the same pattern for importing those libraries,
in order to avoid the #else branches of the incorrect patterns to be
applied to the wrong platform. This was very normal for Android, which
normally should follow the Linux branches, but sometimes was trying to
import Darwin or not importing anything.
The standarized pattern imports Darwin for macOS, iOS, tvOS and watchOS.
It imports Glibc for Linux, FreeBSD, PS4, Android, Cygwin and Haiku; and
imports MSVCRT for Windows. If a new platform is introduced, the else
branch will report an error, so the new platform can be added to one of
the branches (or maybe add a new specific branch).
In some cases the standard pattern was modified because some test required
it (importing extra modules, or extra type aliases), and in some other
cases some branches were removed because the test will not have used
them (but it is not exhaustive, so there might be some unnecessary
branches).
This should, at least, fix three tests for Android (the three
dynamic_replacement*.swift ones).
This undoes some of Joe's work in 8665342 to add a guarantee: if an
@objc convenience initializer only calls other @objc initializers that
eventually call a designated initializer, it won't result in an extra
allocation. While Objective-C /allows/ returning a different object
from an initializer than the allocation you were given, doing so
doesn't play well with some very hairy implementation details of
compiled nib files (or NSCoding archives with cyclic references in
general).
This guarantee only applies to
(1) calling `self.init`
(2) where the delegated-to initializer is @objc
because convenience initializers must do dynamic dispatch when they
delegate, and Swift only stores allocating entry points for
initializers in a class's vtable. To dynamically find an initializing
entry point, ObjC dispatch must be used instead.
(It's worth noting that this patch does NOT check that the calling
initializer is a convenience initializer when deciding whether to use
ObjC dispatch for `self.init`. If we ever add peer delegation to
designated initializers, which is totally a valid feature, that should
use static dispatch and therefore should not go through objc_msgSend.)
This change doesn't /always/ result in fewer allocations; if the
delegated-to initializer ends up returning a different object after
all, the original allocation was wasted. Objective-C has the same
problem (one of the reasons why factory methods exist for things like
NSNumber and NSArray).
We do still get most of the benefits of Joe's original change. In
particular, vtables only ever contain allocating initializer entry
points, never the initializing ones, and never /both/ (which was a
thing that could happen with 'required' before).
rdar://problem/46823518
These tests require the ObjC Foundation framework currently (although it
should be possible have them use the swift corelibs Foundation project
to satisfy this requirement). Marking the tests indicates that these
tests do not have the dependencies to run on Windows.
Create a new capturing substitution for adding a rpath to a target
library. This is needed as Windows doesn't really support the concept
of a rpath. This also makes it possible to remove the parameter from
the command line on windows.
Thanks to @jrose for the hint about the substitution ordering, the new
substitution now works even inside the capture group. Replace the
remaining uses to the new macro.
The naming convention is different on Windows than on Unix-like
environments. In order to follow the convention we need to substitute
the prefix and the suffix. Take the opportunity to rename the
`target-dylib-extension` to the CMake-like variable
`target-shared-library-suffix` and introduce
`target-shared-library-prefix`. This helps linking the test suite
binaries on Windows.
libobjc needs to look up classes by name. Some Swift classes, such as
instantiated generics and their subclasses, are created only on demand.
Now a by-name lookup from libobjc counts as a demand for those classes.
rdar://problem/27808571
Completely mechanical changes:
- Explicit @objc in a few places
- Some imported APIs changed
- For the mix-and-match tests, just test version 4/5 instead of 3/4
...like LLDB does, instead of parsing into a single SourceFile.
This does break some functionality:
- no more :dump_ast
- no redeclaration checking, but no shadowing either---redeclarations
just become ambiguous
- pretty much requires EnableAccessControl to be off, since we don't
walk decls to promote them to 'public'
...but it allows us to remove a bit of longstanding support for
type-checking / SILGen-ing / IRGen-ing only part of a SourceFile that
was only used by the integrated REPL.
...which, need I remind everyone, is still /deprecated/...but sometimes
convenient. So most of it still works.
Most of this is just "remember to specify the inputs and outputs on
the command line, so remote-run can see them". A bit is "prefix
environment variables with '%env-'". And the last few are "yeah,
this was never going to work in a remote environment".
In the few cases where I couldn't think of anything reasonable, I just
marked the test as "UNSUPPORTED: remote_run", a new "feature".
* Make _sanityCheck internal
* Make _debugPrecondition internal
* Make Optional._unsafelyUnwrappedUnchecked internal.
* Make _precondition internal
* Switch Foundation _sanityChecks to assertions
* Update file check tests
* Remove one more _debugPrecondition
* Update Optimization-with-check tests
I messed up the condition here---'targetEnvironment(device)' is
ignored and should be written '!targetEnvironment(simulator)'---but
even besides that I didn't actually have the right conditions for
which iOS devices this passes on and which it doesn't. Rather than
trying to perfectly match this with an XFAIL, just skip the parts of
the test that depend on having a new enough 2018 OS build if we, well,
don't have it.
rdar://problem/42398849
Follow-up to 3ed3774e07. On Apple OSs that don't have the new
Objective-C runtime function 'objc_setHook_getImageName', override the
system definition of 'class_getImageName' by literally rewriting
symbol tables at run time.
Yes, you read that correctly.
The low-level part of this patch was written by Greg Parker, then
simplified and tweaked by me to fit the Swift coding style. Don't try
this at home; it comes with all sorts of caveats and won't actually
work on this year's iOS. (Fortunately we don't need it there, because
that will have the new ObjC entry point.)
The rest of the patch is pretty straightforward: the replacement
implementation calls the code that supports Swift objects (the same
code we use on newer OSs), which then chains back to the original
system implementation of class_getImageName. May we never have to
touch this again.
rdar://problem/41535552
This not only restores the correct behavior for classes with generic
ancestry, but also handles actual generic classes as well. (This is
the function that backs Foundation's Bundle.init(for: AnyClass)
initializer.)
https://bugs.swift.org/browse/SR-1917
rdar://problem/33450609&40367300
Dynamic subclasses aren't /really/ valid Swift type metadata, but
they can still be used as values of type AnyClass. Make sure we
don't assert when that happens.
No intended functionality change.
Switch StringObject and StringGuts from opaquely storing tagged cocoa
strings into storing small strings. Plumb small string support
throughout the standard library's routines.
This includes global generic and non-generic global access
functions, protocol associated type access functions,
swift_getGenericMetadata, and generic type completion functions.
The main part of this change is that the functions now need to take
a MetadataRequest and return a MetadataResponse, which is capable
of expressing that the request can fail. The state of the returned
metadata is reported as an second, independent return value; this
allows the caller to easily check the possibility of failure without
having to mask it out from the returned metadata pointer, as well
as allowing it to be easily ignored.
Also, change metadata access functions to use swiftcc to ensure that
this return value is indeed returned in two separate registers.
Also, change protocol associated conformance access functions to use
swiftcc. This isn't really related, but for some reason it snuck in.
Since it's clearly the right thing to do, and since I really didn't
want to retroactively tease that back out from all the rest of the
test changes, I've left it in.
Also, change generic metadata access functions to either pass all
the generic arguments directly or pass them all indirectly. I don't
know how we ended up with the hybrid approach. I needed to change all
the code-generation and calls here anyway in order to pass the request
parameter, and I figured I might as well change the ABI to something
sensible.
This allows them to be used in generic arguments for NSArray et al.
We already do this for the ones that wrap bridged values (like
NSString/String), but failed to do it for objects that /weren't/
bridged to Swift values (class instances and protocol compositions),
or for Error-which-is-special.
In addition to this being a sensible thing to do, /not/ doing this led
to IRGen getting very confused (i.e. crashing) when we imported a
Objective-C protocol that actually used an NS_TYPED_ENUM in this way.
(We actually shouldn't be using Swift's IRGen logic to emit protocol
descriptors for imported protocols at all, because it's possible we
weren't able to import all the requirements. But that's a separate
issue.)
https://bugs.swift.org/browse/SR-6844
The runtime hash table for protocol conformances is keyed by (type, protocol),
where the type can be either a type metadata pointer or a type context
descriptor. The latter is preferred for generic and resilient types, because
a single entry in the cache can work for any instantiation.
However, not all type metadata has a corresponding type context descriptor.
For example, a class that is dynamically subclassed by the Objective-C
runtime won't have a type context descriptor. In such cases, our key
into the hash table was (NULL, protocol) leading to mistaken
conformances for different dynamically-subclassed types.
Introduce a NULL check for the type of the hash table key, which
illustrates the problem in a number of existing tests that exercise
the runtime, and teach the runtime to use the type context descriptor
as the key only when it's non-NULL, falling back to the type metadata
pointer otherwise.
Fixes rdar://problem/38053213.
This converts the instances of the pattern for which we have a proper
substitution in lit. This will make it easier to replace it
appropriately with Windows equivalents.
Stop creating ImplicitlyUnwrappedOptional<T> so that we can remove it
from the type system.
Enable the code that generates disjunctions for Optional<T> and
rewrites expressions based on the original declared type being 'T!'.
Most of the changes supporting this were previously merged to master,
but some things were difficult to merge to master without actually
removing IUOs from the type system:
- Dynamic member lookup and dynamic subscripting
- Changes to ensure the bridging peephole still works
Past commits have attempted to retain as much fidelity with how we
were printing things as possible. There are some cases where we still
are not printing things the same way:
- In diagnostics we will print '?' rather than '!'
- Some SourceKit and Code Completion output where we print a Type
rather than Decl.
Things like module printing via swift-ide-test attempt to print '!'
any place that we now have Optional types that were declared as IUOs.
There are some diagnostics regressions related to the fact that we can
no longer "look through" IUOs. For the same reason some output and
functionality changes in Code Completion. I have an idea of how we can
restore these, and have opened a bug to investigate doing so.
There are some small source compatibility breaks that result from
this change:
- Results of dynamic lookup that are themselves declared IUO can in
rare circumstances be inferred differently. This shows up in
test/ClangImporter/objc_parse.swift, where we have
var optStr = obj.nsstringProperty
Rather than inferring optStr to be 'String!?', we now infer this to
be 'String??', which is in line with the expectations of SE-0054.
The fact that we were only inferring the outermost IUO to be an
Optional in Swift 4 was a result of the incomplete implementation of
SE-0054 as opposed to a particular design. This should rarely cause
problems since in the common-case of actually using the property rather
than just assigning it to a value with inferred type, we will behave
the same way.
- Overloading functions with inout parameters strictly by a difference
in optionality (i.e. Optional<T> vs. ImplicitlyUnwrappedOptional<T>)
will result in an error rather than the diagnostic that was added
in Swift 4.1.
- Any place where '!' was being used where it wasn't supposed to be
allowed by SE-0054 will now treat the '!' as if it were '?'.
Swift 4.1 generates warnings for these saying that putting '!'
in that location is deprecated. These locations include for example
typealiases or any place where '!' is nested in another type like
`Int!?` or `[Int!]`.
This commit effectively means ImplicitlyUnwrappedOptional<T> is no
longer part of the type system, although I haven't actually removed
all of the code dealing with it yet.
ImplicitlyUnwrappedOptional<T> is is dead, long live implicitly
unwrapped Optional<T>!
Resolves rdar://problem/33272674.
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.