Officially kick SILBoxType over to be "nominal" in its layout, with generic layouts structurally parameterized only by formal types. Change SIL to lower a capture to a nongeneric box when possible, or a box capturing the enclosing generic context when necessary.
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments
Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236
This ensures that ownership is properly propagated forward through the use-def
graph.
This was the work that was stymied by issues relating to SILBuilder performing
local ARC dataflow. I ripped out that local dataflow in 6f4e2ab and added a
cheap ARC guaranteed dataflow pass that performs the same optimization.
Also in the process of doing this work, I found that there were many SILGen
tests that were either pattern matching in the wrong functions or had wrong
CHECK lines (for instance CHECK_NEXT). I fixed all of these issues and also
expanded many of the tests so that they verify ownership. The only work I left
for a future PR is that there are certain places in tests where we are using the
projection from an original value, instead of a copy. I marked those with a
message SEMANTIC ARC TODO so that they are easy to find.
rdar://28685236
From the Swift documentation:
"If you define an optional variable without providing a default value,
the variable is automatically set to nil for you."
This flips the switch to have @noescape be the default semantics for
function types in argument positions, for everything except property
setters. Property setters are naturally escaping, so they keep their
escaping-by-default behavior.
Adds contentual printing, and updates the test cases.
There is some further (non-source-breaking) work to be done for
SE-0103:
- We need the withoutActuallyEscaping function
- Improve diagnostics and QoI to at least @noescape's standards
- Deprecate / drop @noescape, right now we allow it
- Update internal code completion printing to be contextual
- Add more tests to explore tricky corner cases
- Small regressions in fixits in attr/attr_availability.swift
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
For long names this is easier to read and in most cases the omitted information can be seen in the actual SIL code.
With the option -Xllvm -sil-full-demangle the old behavior can be restored.
And use project_box to get to the address value.
SILGen now generates a project_box for each alloc_box.
And IRGen re-uses the address value from the alloc_box if the operand of project_box is an alloc_box.
This lets the generated code be the same as before.
Other than that most changes of this (quite large) commit are straightforward.
Having a separate address and container value returned from alloc_stack is not really needed in SIL.
Even if they differ we have both addresses available during IRGen, because a dealloc_stack is always dominated by the corresponding alloc_stack in the same function.
Although this commit quite large, most changes are trivial. The largest non-trivial change is in IRGenSIL.
This commit is a NFC regarding the generated code. Even the generated SIL is the same (except removed #0, #1 and @local_storage).
Debug variable info may be attached to debug_value, debug_value_addr,
alloc_box, and alloc_stack instructions.
In order to write textual SIL -> SIL testcases that exercise the handling
of debug information by SIL passes, we need to make a couple of additions
to the textual SIL language. In memory, the debug information attached to
SIL instructions references information from the AST. If we want to create
debug info from parsing a textual .sil file, these bits need to be made
explicit.
Performance Notes: This is memory neutral for compilations from Swift
source code, because the variable name is still stored in the AST. For
compilations from textual source the variable name is stored in tail-
allocated memory following the SIL instruction that introduces the
variable.
<rdar://problem/22707128>
All refutable patterns and function parameters marked with 'var'
is now an error.
- Using explicit 'let' keyword on function parameters causes a warning.
- Don't suggest making function parameters mutable
- Remove uses in the standard library
- Update tests
rdar://problem/23378003
SILPrinter was printing uses for all SIL values, except for SIL basic blocks arguments. Fill the gap and print uses for BB arguments as well. This makes reading and analyzing SIL easier.
Basic blocks may have multiple arguments, therefore print uses of each BB argument on separate lines - one line per BB argument.
The comment containing information about uses of a BB argument is printed on the line just above the basic block name, following the approach used for function_ref and other kinds of instructions, which have additional information printed on the line above the actual instruction.
The output now looks like:
// %0 // user: %3
// %1 // user: %9
bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<UnsafeMutablePointer<Int8>>):
rdar://23336589
This prevents us from seeing a less useful error message from SILGen
further down the line.
Also fix a bug where @objc without importing Foundation was not diagnosed
after the first top-level form. Some tests were relying on this behavior,
so fix those tests, either by splitting off the objc parts of the test, or
just by passing the -disable-objc-attr-requires-foundation-module flag.
Fixes <rdar://problem/20660270>.
Swift SVN r29359
This reapplies commit r27632 with additional fixes, tests.
I turned off the guaranteed struct optimization since we really don't have the
infrastructure to do it right and more importantly I don't have the time to do
so (and was not asked to do so).
We still have the class optimization though!
This means that there is one retain in ClassIntTreeMethod.find.
class ClassIntTreeNode {
let value : Int
let left, right : ClassIntTreeNode
init() {}
func find(v : Int) -> ClassIntTreeNode {
if v == value { return self }
if v < value { return left.find(v) }
return right.find(v)
}
}
Swift SVN r28264
Specifically this patch makes the following changes:
1. We properly propagate down the SGFContext of a tuple to its elements
when extracting from a tuple. There was a typo that caused us to use
data from the newly created default initialized copy instead of from the
actual SGFContext of the parent tuple.
2. If we are accessing a member ref of self in a guaranteed context:
a. If self is a struct, regardless of whether or not the field is a
var or a let we no longer emit a retain. This is b/c self in a
guaranteed context is immutable. This implies even a var in the
struct can not be reassigned to.
b. If self is a class, if the field is a let, we no longer emit an
extra retain.
This makes it so that the only rr traffic in IntTreeNode::find is in the
block of code where we return self.
class IntTreeNode {
let value : Int
let left, right : IntTreeNode
init() {} // not needed for -emit-silgen
func find(v : Int) -> IntTreeNode {
if v == value { return self }
if v < value { return left.find(v) }
return right.find(v)
}
}
One gets the same effect using a struct for IntTreeNode and a generic
box class, i.e.:
class Box<T> {
let value: T
init(newValue: T) { value = newValue }
}
class Kraken {}
struct IntTreeNode {
let k : Kraken // Just to make IntTreeNode non-trivial for rr purposes.
let left, right : Box<IntTreeNode>
init() {} // not needed for -emit-silgen
func find(v : Int) -> IntTreeNode {
if v == value { return self }
if v < value { return left.value.find(v) }
return right.value.find(v)
}
}
There is more work that can be done here by applying similar logic to
enums, i.e. switching on self in an enum should not generate any rr
traffic over the switch. Also it seems that there are some places in SILGen
where isGuaranteedValid is not being propagated to SILGenFunction::emitLoad. But
that is for another day.
I am going to gather data over night and send an email to the list.
rdar://15729033
Swift SVN r27632
The only caveat is that:
1. We do not properly recognize when we have a let binding and we
perform a guaranteed dynamic call. In such a case, we add an extra
retain, release pair around the call. In order to get that case I will
need to refactor some code in Callee. I want to make this change, but
not at the expense of getting the rest of this work in.
2. Some of the protocol witness thunks generated have unnecessary
retains or releases in a similar manner.
But this is a good first step.
I am going to send a large follow up email with all of the relevant results, so
I can let the bots chew on this a little bit.
rdar://19933044
Swift SVN r27241
We no longer need or use it since we can always refer to the same bit on
the applied function when deciding whether to inline during mandatory
inlining.
Resolves rdar://problem/19478366.
Swift SVN r26534
For better consistency with other address-only instruction variants, and to open the door to new exciting existential representations (such as a refcounted boxed representation for ErrorType).
Swift SVN r25902
This rearranges code so that the destroy_addr cleanup generated to
deallocate a 'let' stack temporary is generated against the mark_uninitialized
instruction. This allows DI to see it, and nuke it on paths where the let constant
is never assigned.
Swift SVN r25349
the call instead of during the formal evaluation of the argument.
This is the last major chunk of the semantic changes proposed
in the accessors document. It has two purposes, both related
to the fact that it shortens the duration of the formal access.
First, the change isolates later evaluations (as long as they
precede the call) from the formal access, preventing them from
spuriously seeing unspecified behavior. For example::
foo(&array[0], bar(array))
Here the value passed to bar is a proper copy of 'array',
and if bar() decides to stash it aside, any modifications
to 'array[0]' made by foo() will not spontaneously appear
in the copy. (In contrast, if something caused a copy of
'array' during foo()'s execution, that copy would violate
our formal access rules and would therefore be allowed to
have an arbitrary value at index 0.)
Second, when a mutating access uses a pinning addressor, the
change limits the amount of arbitrary code that falls between
the pin and unpin. For example::
array[0] += countNodes(subtree)
Previously, we would begin the access to array[0] before the
call to countNodes(). To eliminate the pin and unpin, the
optimizer would have needed to prove that countNodes didn't
access the same array. With this change, the call is evaluated
first, and the access instead begins immediately before the call
to +=. Since that operator is easily inlined, it becomes
straightforward to eliminate the pin/unpin.
A number of other changes got bundled up with this in ways that
are hard to tease apart. In particular:
- RValueSource is now ArgumentSource and can now store LValues.
- It is now illegal to use emitRValue to emit an l-value.
- Call argument emission is now smart enough to emit tuple
shuffles itself, applying abstraction patterns in reverse
through the shuffle. It also evaluates varargs elements
directly into the array.
- AllowPlusZero has been split in two. AllowImmediatePlusZero
is useful when you are going to immediately consume the value;
this is good enough to avoid copies/retains when reading a 'var'.
AllowGuaranteedPlusZero is useful when you need a stronger
guarantee, e.g. when arbitrary code might intervene between
evaluation and use; it's still good enough to avoid copies
from a 'let'. The upshot is that we're now a lot smarter
about generally avoiding retains on lets, but we've also
gotten properly paranoid about calling non-mutating methods
on vars.
(Note that you can't necessarily avoid a copy when passing
something in a var to an @in_guaranteed parameter! You
first have to prove that nothing can assign to the var during
the call. That should be easy as long as the var hasn't
escaped, but that does need to be proven first, so we can't
do it in SILGen.)
Swift SVN r24709
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
Have the ArgumentInitVisitor directly bind argument variables to BB arguments, instead of trying to reuse the InitializationForPattern logic used for general variable bindings. That was a nice idea, but it leads to some ugly edge cases because of the many little ways arguments are different from local variable bindings. By getting rid of the abstraction layers, it's easy for argument binding to bind +0 guaranteed or +1 arguments in place when appropriate, avoiding an r/r pair for "let" bindings. It will also let us eliminate some ugly code from variable binding initialization. Should be NFC aside from some harmless reordering of prolog/epilog variable setup.
Swift SVN r24412