Type annotations for instruction operands are omitted, e.g.
```
%3 = struct $S(%1, %2)
```
Operand types are redundant anyway and were only used for sanity checking in the SIL parser.
But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:
* if the block with the definition appears after the block where the operand's instruction is located
* if a block or instruction is printed in isolation, e.g. in a debugger
The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
This change ensures all store_borrows are ended with an end_borrow, and uses of the store_borrow
destination are all in the enclosing store_borrow scope and via the store_borrow return address.
Fix tests to reflect new store_borrow pattern
This pass generated incorrect borrow scopes:
%stack = alloc_stack
%borrow = begin_borrow %element
store_borrow %borrow to %stack
end_borrow %borrow
try_apply %f(%stack) normal bb1, error bb2
...
destroy_value %element
This was not showing up as a miscompile before because:
- an array holds an extra copy of the unrolled elements, that array is
now being optimized away completely.
- CopyPropagation now canonicalizes OSSA lifetimes independent of
unrelated program side effects.
So, since there is no explicit relationship between %borrow and the
OSSA value in %stack, we end up with:
%stack = alloc_stack
%borrow = begin_borrow %element
store_borrow %borrow to %stack
end_borrow %borrow
destroy_value %element
try_apply %f(%stack) normal bb1, error bb2
Fixes rdar://72904101 ([CanonicalOSSA] Fix ForEachLoopUnroll use-after-free miscompile.)
In order to allow this, I've had to rework the syntax of substituted function types; what was previously spelled `<T> in () -> T for <X>` is now spelled `@substituted <T> () -> T for <X>`. I think this is a nice improvement for readability, but it did require me to churn a lot of test cases.
Distinguishing the substitutions has two chief advantages over the existing representation. First, the semantics seem quite a bit clearer at use points; the `implicit` bit was very subtle and not always obvious how to use. More importantly, it allows the expression of generic function types that must satisfy a particular generic abstraction pattern, which was otherwise impossible to express.
As an example of the latter, consider the following protocol conformance:
```
protocol P { func foo() }
struct A<T> : P { func foo() {} }
```
The lowered signature of `P.foo` is `<Self: P> (@in_guaranteed Self) -> ()`. Without this change, the lowered signature of `A.foo`'s witness would be `<T> (@in_guaranteed A<T>) -> ()`, which does not preserve information about the conformance substitution in any useful way. With this change, the lowered signature of this witness could be `<T> @substituted <Self: P> (@in_guaranteed Self) -> () for <A<T>>`, which nicely preserves the exact substitutions which relate the witness to the requirement.
When we adopt this, it will both obviate the need for the special witness-table conformance field in SILFunctionType and make it far simpler for the SILOptimizer to devirtualize witness methods. This patch does not actually take that step, however; it merely makes it possible to do so.
As another piece of unfinished business, while `SILFunctionType::substGenericArgs()` conceptually ought to simply set the given substitutions as the invocation substitutions, that would disturb a number of places that expect that method to produce an unsubstituted type. This patch only set invocation arguments when the generic type is a substituted type, which we currently never produce in type-lowering.
My plan is to start by producing substituted function types for accessors. Accessors are an important case because the coroutine continuation function is essentially an implicit component of the function type which the current substitution rules simply erase the intended abstraction of. They're also used in narrower ways that should exercise less of the optimizer.
calls over arrays created from array literals. This enables optimizing
further the output of the OSLogOptimization pass, and results in
highly-compact and optimized IR for calls to the new os log API.
<rdar://58928427>