This commit built upon the work of Pull Request 3895. Apart from the
work to make the following work
```swift
let f: (Int, Int) -> Void = { x in } // this is now an error
```
This patch also implement the part 2 mentioned in the #3895
```swift
let g: ((Int, Int)) -> Void = { y in } // y should have type (Int, Int)
```
Implements part of SE-0110. Single argument in closures will not be accepted if
there exists explicit type with a number of arguments that's not 1.
```swift
let f: (Int, Int) -> Void = { x in } // this is now an error
```
Note there's a second part of SE-0110 which could be considered additive,
which says one must add an extra pair of parens to specify a single arugment
type that is a tuple:
```swift
let g ((Int, Int)) -> Void = { y in } // y should have type (Int, Int)
```
This patch does not implement that part.
almost always the case that the user didn't know what the rules are between
single expression and multistatement closures, and they often don't know how to
fix the problem.
Address this by doing some heroics when we detect this situation. We now go dive
into the closure body, type check the explicit returns within it, and can usually
divine the right answer. When we do that, generate a fixit hint that generates a
modification to the existing signature, or synthesizes the entire signature from
scratch. This addresses:
<rdar://problem/22123191> QoI: multi-line closure with failure to infer result type should add a fixit
We previously produced the unhelpful error message:
x.swift:11:7: error: type of expression is ambiguous without more context
we now produce:
error: unable to infer closure return type in current context
which is going in the right direction.
This flips the switch to have @noescape be the default semantics for
function types in argument positions, for everything except property
setters. Property setters are naturally escaping, so they keep their
escaping-by-default behavior.
Adds contentual printing, and updates the test cases.
There is some further (non-source-breaking) work to be done for
SE-0103:
- We need the withoutActuallyEscaping function
- Improve diagnostics and QoI to at least @noescape's standards
- Deprecate / drop @noescape, right now we allow it
- Update internal code completion printing to be contextual
- Add more tests to explore tricky corner cases
- Small regressions in fixits in attr/attr_availability.swift
* [Fixit] Add a fixit for converting non-trailing closures to trailing closures.
* [test] Update test to reflect the added note about converting to trailing closures.
along with recent policy changes:
- For expression types that are not specifically handled, make sure to
produce a general "unused value" warning, catching a bunch of unused
values in the testsuite.
- For unused operator results, diagnose them as uses of the operator
instead of "calls".
- For calls, mutter the type of the result for greater specificity.
- For initializers, mutter the type of the initialized value.
- Look through OpenExistentialExpr's so we can handle protocol member
references propertly.
- Look through several other expressions so we handle @discardableResult
better.
as a failure to convert the individual operand, since the operator
is likely conceptually generic in some way and the choice of any
specific overload is probably arbitrary.
Since we now fall back to a better-informed diagnostics point, take
advantage of this to generate a specialized diagnostic when trying to
compare values of function type with ===.
Fixes rdar://25666129.
This reverts commit 073f427942,
i.e. it reapplies 35ba809fd0 with a
test fix to expect an extra note in one place.
as a failure to convert the individual operand, since the operator
is likely conceptually generic in some way and the choice of any
specific overload is probably arbitrary.
Since we now fall back to a better-informed diagnostics point, take
advantage of this to generate a specialized diagnostic when trying to
compare values of function type with ===.
Fixes rdar://25666129.
This standardizes processing of callees in invalid applyexprs, eliminating
bogus diagnostics like:
t.swift:6:2: error: cannot invoke closure of type '() -> _' with an argument list of type '()'
we now properly diagnose the example in closure/closures.swift as ambiguous,
but don't do a particularly good job of saying why. That is to follow.
the code to be actually readable since it unnests it greatly), and call it
both before and after argument type validation. This allows us to capture
many more structural errors than before, leading to much better diagnostics
in a lot of cases. This also fixes the specific regressions introduced by
96a1e96.
overloaded argument list mismatches. We printed them in simple cases
due to "Failure" detecting them in trivial situations. Instead of
doing that, let CSDiags do it, which allows us to pick things out of
overload sets and handle the more complex cases well.
This is a progression across the board except for a couple of cases
where we now produce "cannot convert value of type 'whatever' to
expected argument type '(arglist)'", this is a known issue that I'll
fix in a subsequent commit.
Revert "Make function parameters and refutable patterns always
immutable"
This reverts commit 8f2fbdc93a.
Once we have finally merged master into the Swift 2.2 branch to be, we
should revert this commit to turn the errors back on for Swift 3.0.
All refutable patterns and function parameters marked with 'var'
is now an error.
- Using explicit 'let' keyword on function parameters causes a warning.
- Don't suggest making function parameters mutable
- Remove uses in the standard library
- Update tests
rdar://problem/23378003
call expression onto a callee when it was a binary expression. Doing this
requires improving the diagnostics for when the contextual result type is
incompatible with all candidates, but that is general goodness all around.
This fixes:
<rdar://problem/22333090> QoI: Propagate contextual information in a call to operands
and improves a number of diagnostics where the problem is that an operator
is used in a context that expects a type that it cannot produce.
Swift SVN r31891
- Enhance the branch new argument label overload diagnostic to just
print the argument labels that are the problem, instead of printing
the types inferred at the argument context. This can lead to confusion
particularly when an argument label is missing. For example before:
error: argument labels '(Int)' do not match any available overloads
note: overloads for 'TestOverloadSets.init' exist with these partially matching parameter lists: (a: Z0), (value: Int), (value: Double)
after:
error: argument labels '(_:)' do not match any available overloads
note: overloads for 'TestOverloadSets.init' exist with these partially matching parameter lists: (a: Z0), (value: Int), (value: Double)
Second, fix <rdar://problem/22451001> QoI: incorrect diagnostic when argument to print has the wrong type
by specifically diagnosing the problem when you pass in an argument to a nullary function. Before:
error: cannot convert value of type 'Int' to expected argument type '()'
after:
error: argument passed to call that takes no arguments
print(r22451001(5))
^
Swift SVN r31795
<rdar://problem/22333281> QoI: improve diagnostic when contextual type of closure disagrees with arguments
In the common case where someone doesn't care about the argument
list to a closure, we now generate a tailored error message with a
fixit to introduce the necessary "_,_ in " nonsense at the start
of the closure. IMO ideally we wouldn't require this, but until we
fix that type checker issue, we should at least give people the
obvious fix.
Swift SVN r31720
expr diagnosis stuff, giving us much better diagnostics on the cases in
expr/closure/closures.swift. This is part #2 of resolving
<rdar://problem/22333281> QoI: improve diagnostic when contextual type of closure disagrees with arguments
Swift SVN r31717
specifies some # of arguments but the closureexpr itself disagrees. This is
step #1 to resolving
<rdar://problem/22333281> QoI: improve diagnostic when contextual type of closure disagrees with arguments
Swift SVN r31715