Now that arguments are marked up with whether they have a default or
not, clients may not need the extra call (that has no default
arguments). Add an option to allow not adding this item.
Resolves rdar://85526214.
When looking for a Swift module on disk, we were scanning all module search paths if they contain the module we are searching for. In a setup where each module is contained in its own framework search path, this scaled quadratically with the number of modules being imported. E.g. a setup with 100 modules being imported form 100 module search paths could cause on the order of 10,000 checks of `FileSystem::exists`. While these checks are fairly fast (~10µs), they add up to ~100ms.
To improve this, perform a first scan of all module search paths and list the files they contain. From this, create a lookup map that maps filenames to the search paths they can be found in. E.g. for
```
searchPath1/
Module1.framework
searchPath2/
Module1.framework
Module2.swiftmodule
```
we create the following lookup table
```
Module1.framework -> [searchPath1, searchPath2]
Module2.swiftmodule -> [searchPath2]
```
When opening a file for the first time, we don’t store a snapshot for it. This could cause a crash when trying to consult its snapshot to see whether an AST can be reused for cursor info.
Instead of checking that the stdlib can be loaded in a variety of places, check it when setting up the compiler instance. This required a couple more checks to avoid loading the stdlib in cases where it’s not needed.
To be able to differentiate stdlib loading failures from other setup errors, make `CompilerInstance::setup` return an error message on failure via an inout parameter. Consume that error on the call side, replacing a previous, more generic error message, adding error handling where appropriate or ignoring the error message, depending on the context.
Enqueuing `SwiftASTConsumer`s might be expensive because `getBuildOperationForConsumer` consults the file system. Since all results from the AST build are processed asynchronously anyway, there’s no need to perform the enqueuing synchronously.
rdar://86289703
We never need to have two copies of the same `FileContent` object, so we don’t need a copy constructor and can thus pass it on the stack again, instead of storing it on the heap.
MSVC doens't pack diffrent underlying int types into a bitfield. e.g.
struct S {
int a: 1;
char b: 1;
int c: 1;
};
These fields are considered three sparate bitfields.
The switch between compilers causes problems due to new flags being used
for building. This adds a workaround to avoid the search path
re-ordering which breaks the build with a newer CMake.
Essentially, just wire up cancellation tokens and cancellation flags for `CompletionInstance` and make sure to return `CancellableResult::cancelled()` when cancellation is detected.
rdar://83391488
We need to modify the pointer pointing to the cancellation flag when reusing an ASTContext for code completion. This is not possible by the previous design because `TypeCheckerOptions` was `const`. Moving the cancellation flag to `ASTContext` will also allow other stages of the compiler to honor a cancellation request.
Currently, we were building an AST on document open or edit even if
- `key_enablesyntaxmap` = 0
- `key_enablesubstructure` = 0
- `key_enablediagnostics` = 0 and
- syntax tree transfer mode is off
In those cases we were just ignoring the result.
If all of the options are 0, don’t build an AST.
rdar://85847659