When matching candidate like `[Int]` against `Array<Element>`
we need to conservatively assume that if the nominals match
the argument is a viable exact match because otherwise it's
possible to skip some of the valid matches when other overload
choice have generic parameters at the same parameter position.
The problem this is trying to solve is eager selection of operators
over unsupported disjunctions, when matching operators let's take
speculative information into account because it helps to make better
choices in this case.
The test was slow with hacks but now it's much faster - takes about
63k scopes to solve, it could be improved by introducing new overloads
of prefix `-` to stdlib.
Some of the disjunctions are not supported by the optimizers but
could still be a better choice than an operator. Using a non-score
based preference mechanism first allows us to make sure that
operator disjunctions are not selected too eagerly in some situations
when i.e. a member (supported or not) could be a better choice.
`isPreferable` currently targets only operators in result builder
contexts but it could be expanded to more uses in the future.
New ranking + selection algorithm suffered from over-eagerly selecting
operator disjunctions vs. unsupported non-operator ones even if the
ranking was based purely on literal candidates.
This change introduces a notion of a speculative candidate - one which
has a type inferred from a literal or an initializer call that has
failable overloads and/or implicit conversions (i.e. Double/CGFloat).
`determineBestChoicesInContext` would reset the score of an operator
disjunction which was computed based on speculative candidates alone
but would preserve favoring information. This way selection algorithm
would not be skewed towards operators and at the same time if there
is no no choice by to select one we'd still have favoring information
available which is important for operator chains that consist purely
of literals.
If there are no-same type requirements and parameters use
either concrete types or generic parameter types directly,
the optimizer should be able to handle ranking. Currently
candidate arguments are considered in isolation which makes
it impossible to deal with same-type requirements and
complex generic signatures.
rdar://153681688
Instead fo counting the actual conformances, the logic took the size of the bit field, i.e. used the highest set bit, so when a type had a conditional conformance only on ~Escapable, but not on ~Copyable, it would still add 2 placeholders, but only fill one.
Turns out we can also get solver-allocated original ErrorTypes through
type resolution. Given the original type is only used for
printing/debugging, let's just fold away any type variables and
placeholders into UnresolvedType (which print as placeholders). This
matches what `Solution::simplifyType` does.
When a `FixedArray`'s fixed size is 1, it looks like `[1 x %Ty]`. Given
an array's address, performing an operation on each element's address
entail's indexing into the array to each element's index to produce an
element's address for each index. That is true even when the array
consists of a single element. In that case, produce an address for that
single element by indexing to index 0 into each passed-in array.
rdar://151726387