This is yet another waypoint on the path towards the final
generic-metadata design. The immediate goal is to make the
pattern a private implementation detail and to give the runtime
more visibility into the allocation and caching of generic types.
The key path pattern needs to include a reference to the external descriptor, along with hooks for lowering its type arguments and indices, if any. The runtime will need to instantiate and interpolate the external component when the key path object is instantiated.
While we're here, let's also reserve some more component header bytes for future expansion, since this is an ABI we're going to be living with for a while.
This makes resolving mangled names to nominal types in the same module more efficient, and for eventual secrecy improvements, also allows types in the same module to be referenced from mangled typerefs without encoding any source-level name information about them.
A "retroactive" protocol conformance is a conformance that is provided
by a module that is neither the module that defines the protocol nor
the module that defines the conforming type. It is possible for such
conformances to conflict at runtime, if defined in different modules
that were not both visible to the compiler at the same time.
When mangling a bound generic type, also mangle retroactive protocol
conformances that were needed to satisfy the generic requirements of
the generic type. This prevents name collisions between (e.g.) types
formed using retroactive conformances from different modules. The
impact on the size of the mangling is expected to be relatively small,
because most conformances are not retroactive.
Fixes the ABI part of rdar://problem/14375889.
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.
(and 'La'...'Lj')
Use this for the synthesized structs for error enums, as described in
the previous commit, instead of reusing the "private discriminator"
feature. I left some space in the APIs for "related entity kinds" that
are longer than a single character, but I don't actually expect to use
it any time soon. It's mostly just easier to deal with StringRef than
with a bare char.
Note that this doesn't perfectly round-trip to the old mangling; I had
it treat these nodes as private discriminators with a prefixed "$"
instead. We don't depend on that for anything, though.
While creating demangled tree for function and tuple types
`_swift_buildDemanglingForMetadata` should use correct format
established by mangler and respected by printer/demangler.
So far single payload enums were implemented in terms of runtime functions which
internally emitted several calls to value witnesses.
This commit adds value witnesses to get and store the enum tag side stepping the
need for witness calls as this information is statically available in many cases
/// int (*getEnumTagSinglePayload)(const T* enum, UINT_TYPE emptyCases)
/// Given an instance of valid single payload enum with a payload of this
/// witness table's type (e.g Optional<ThisType>) , get the tag of the enum.
/// void (*storeEnumTagSinglePayload)(T* enum, INT_TYPE whichCase,
/// UINT_TYPE emptyCases)
/// Given uninitialized memory for an instance of a single payload enum with a
/// payload of this witness table's type (e.g Optional<ThisType>), store the
/// tag.
A simple 'for element in array' loop in generic code operating on a
ContigousArray of Int is ~25% faster on arm64.
rdar://31408033
Support for @noescape SILFunctionTypes.
These are the underlying SIL changes necessary to implement the new
closure capture ABI.
Note: This includes a change to function name mangling that
primarily affects reabstraction thunks.
The new ABI will allow stack allocation of non-escaping closures as a
simple optimization.
The new ABI, and the stack allocation optimization, also require
closure context to be @guaranteed. That will be implemented as the
next step.
Many SIL passes pattern match partial_apply sequences. These all
needed to be fixed to handle the convert_function that SILGen now
emits. The conversion is now needed whenever a function declaration,
which has an escaping type, is passed into a @NoEscape argument.
In addition to supporting new SIL patterns, some optimizations like
inlining and SIL combine are now stronger which could perturb some
benchmark results.
These underlying SIL changes should be merged now to avoid conflicting
with other work. Minor benchmark discrepancies can be investigated as part of
the stack-allocation work.
* Add a noescape attribute to SILFunctionType.
And set this attribute correctly when lowering formal function types to SILFunctionTypes based on @escaping.
This will allow stack allocation of closures, and unblock a related ABI change.
* Flip the polarity on @noescape on SILFunctionType and clarify that
we don't default it.
* Emit withoutActuallyEscaping using a convert_function instruction.
It might be better to use a specialized instruction here, but I'll leave that up to Andy.
Andy: And I'll leave that to Arnold who is implementing SIL support for guaranteed ownership of thick function types.
* Fix SILGen and SIL Parsing.
* Fix the LoadableByAddress pass.
* Fix ClosureSpecializer.
* Fix performance inliner constant propagation.
* Fix the PartialApplyCombiner.
* Adjust SILFunctionType for thunks.
* Add mangling for @noescape/@escaping.
* Fix test cases for @noescape attribute, mangling, convert_function, etc.
* Fix exclusivity test cases.
* Fix AccessEnforcement.
* Fix SILCombine of convert_function -> apply.
* Fix ObjC bridging thunks.
* Various MandatoryInlining fixes.
* Fix SILCombine optimizeApplyOfConvertFunction.
* Fix more test cases after merging (again).
* Fix ClosureSpecializer. Hande convert_function cloning.
Be conservative when combining convert_function. Most of our code doesn't know
how to deal with function type mismatches yet.
* Fix MandatoryInlining.
Be conservative with function conversion. The inliner does not yet know how to
cast arguments or convert between throwing forms.
* Fix PartialApplyCombiner.
Currently when function types like `(_: Int...) -> Void` are mangled
their names are going to include enclosing sugar BoundGenericType(Array),
which is not necessary and doesn’t play well with `AnyFunctionType::Param`
which strips the sugar away.
Resolves: rdar://problem/34941557
Previously, two constructors with the same full name and argument
types would get identical manglings even if they were declared
'private' or 'fileprivate' in different files. This would lead to
symbol collisions in whole-module builds. Add a new mangling node for
private discriminators on base-name-less decls to make this unique.
This still doesn't fix the existing issue with private members, named
or not, conflicting when they're in the /same/ file, but since Swift 4
makes those members visible to one another (SE-0169) that's only an
issue in Swift 3 mode anyway, and as such probably won't get fixed at
all.
rdar://problem/27758199
A protocol composition with an explicit 'AnyObject' member is
now mangled as <protocol list> 'Xl'. For subclass existentials,
I changed the mangling from <protocol list> <class> 'XE' to
<protocol list> <class> 'Xl'.
Not used for anything just yet.
The goal here is to make the short demangling as short and readable as possible, also at the cost of omitting some information.
The assumption is that whenever the short demangling is displayed, there is a way for the user to also get the full demangled name if needed.
*) omit <where ...> because it does not give useful information anyway
Deserializer.deserialize<A where ...> () throws -> [A]
--> Deserializer.deserialize<A> () throws -> [A]
*) for multiple specialized functions only emit a single “specialized”
specialized specialized Constructible.create(A.Element) -> Constructible<A>
--> specialized Constructible.create(A.Element) -> Constructible<A>
*) Don’t print function argument types:
foo(Int, Double, named: Int)
--> foo(_:_:named:)
This is a trade-off, because it can lead to ambiguity if there are overloads with different types.
*) make contexts of closures, local functions, etc. more readable by using “<a> in <b>” syntax
This is also done for the full and not only for the simplified demangling.
Renderer.(renderInlines([Inline]) -> String).(closure #1)
--> closure #1 in Renderer.renderInlines
*) change spacing, so that it matches our coding style:
foo <A> (x : A)
--> foo<A>(x: A)