ASTGen always builds with the host Swift compiler, without requiring
bootstrapping, and is enabled in more places. Move the regex literal
parsing logic there so it is enabled in more host environments, and
makes use of CMake's Swift support. Enable all of the regex literal
tests when ASTGen is built, to ensure everything is working.
Remove the "AST" and "Parse" Swift modules from SwiftCompilerSources,
because they are no longer needed.
Remove the default constructor footgun present with
the struct implementations, and sprinkle some
`SWIFT_NAME` and bridging utilities to make them
nicer to work with.
Introduce two modes of bridging:
* inline mode: this is basically how it worked so far. Using full C++ interop which allows bridging functions to be inlined.
* pure mode: bridging functions are not inlined but compiled in a cpp file. This allows to reduce the C++ interop requirements to a minimum. No std/llvm/swift headers are imported.
This change requires a major refactoring of bridging sources. The implementation of bridging functions go to two separate files: SILBridgingImpl.h and OptimizerBridgingImpl.h.
Depending on the mode, those files are either included in the corresponding header files (inline mode), or included in the c++ file (pure mode).
The mode can be selected with the BRIDGING_MODE cmake variable. By default it is set to the inline mode (= existing behavior). The pure mode is only selected in certain configurations to work around C++ interop issues:
* In debug builds, to workaround a problem with LLDB's `po` command (rdar://115770255).
* On windows to workaround a build problem.
Looking at the SIL I came to the conclusion that `Unmanaged` ins fundamentally broken.
It's easier to directly bitcast between bridged and native SIL objects. It also produces simpler SIL which can be further optimized
Let's lldb's `po` command not print any "internal" properties of the conforming type.
This is useful if the `description` already contains all the information of a type instance.
For two reasons:
* We also like to check for assert failures in release builds. Although this could be achieved with `precondition`, it's easy to forget about it and use `assert` instead.
* We need to see the error message in crashlogs of release builds. This is even not the case for `precondition`.
Also, re-export the "Basic" module in "SIL" so that the new assert implementation is also available in the Optimizer module (where all files import SIL).
C++ interop is now enabled in SwiftCompilerSources, so we can remove some of the C bridging layer and use C++ classes directly from Swift.
rdar://83361087
To use _RegexParser from SwiftSyntax.
* Create 'libswiftCompilerModules_SwiftSyntax.a' which is a subset of
'libswiftCompilerModules.a'
* Link 'lib_InternalSwiftSyntaxParser' to
'libswiftCompilerModules_SwiftSyntax.a'
* Factor out swift runtime linking logic in CMake so that dynamic
libraries can link to Swift runtime, in addition to executables
* Link 'lib_InternalSwiftSyntaxParser' to swift runtime
and introduce the StringRef struct.
It's more efficient.
Also, rename the `HasName` protocol to `HasShortDescription`, which introduces the new requirement `shortDescription`. This is need because `name` now has `StringRef` type and not `String` anymore
This fixes:
* An issue where the diagnostic messages were leaked
* Diagnose at correct position inside the regex literal
To do this:
* Introduce 'Parse' SwiftCompiler module that is a bridging layer
between '_CompilerRegexParser' and C++ libParse
* Move libswiftParseRegexLiteral and libswiftLexRegexLiteral to 'Parse'
Also this change makes 'SwiftCompilerSources/Package.swift' be configured
by CMake so it can actually be built with 'swift-build'.
rdar://92187284