Introduce an `unsafe` expression akin to `try` and `await` that notes
that there are unsafe constructs in the expression to the right-hand
side. Extend the effects checker to also check for unsafety along with
throwing and async operations. This will result in diagnostics like
the following:
10 | func sum() -> Int {
11 | withUnsafeBufferPointer { buffer in
12 | let value = buffer[0]
| | `- note: reference to unsafe subscript 'subscript(_:)'
| |- warning: expression uses unsafe constructs but is not marked with 'unsafe'
| `- note: reference to parameter 'buffer' involves unsafe type 'UnsafeBufferPointer<Int>'
13 | tryWithP(X())
14 | return fastAdd(buffer.baseAddress, buffer.count)
These will come with a Fix-It that inserts `unsafe` into the proper
place. There's also a warning that appears when `unsafe` doesn't cover
any unsafe code, making it easier to clean up extraneous `unsafe`.
This approach requires that `@unsafe` be present on any declaration
that involves unsafe constructs within its signature. Outside of the
signature, the `unsafe` expression is used to identify unsafe code.
Instead of producing a warning for each use of an unsafe entity,
collect all of the uses of unsafe constructs within a given function
and batch them together in a single diagnostic at the function level
that tells you what you can do (add `@unsafe` or `@safe(unchecked)`,
depending on whether all unsafe uses were in the definition), plus
notes identifying every unsafe use within that declaration. The new
diagnostic renderer nicely collects together in a single snippet, so
it's easier to reason about.
Here's an example from the embedded runtime that previously would have
been 6 separate warnings, each with 1-2 notes:
```
swift/stdlib/public/core/EmbeddedRuntime.swift:397:13: warning: global function 'swift_retainCount' involves unsafe code; use '@safe(unchecked)' to assert that the code is memory-safe
395 |
396 | @_cdecl("swift_retainCount")
397 | public func swift_retainCount(object: Builtin.RawPointer) -> Int {
| `- warning: global function 'swift_retainCount' involves unsafe code; use '@safe(unchecked)' to assert that the code is memory-safe
398 | if !isValidPointerForNativeRetain(object: object) { return 0 }
399 | let o = UnsafeMutablePointer<HeapObject>(object)
| | `- note: call to unsafe initializer 'init(_:)'
| `- note: reference to unsafe generic struct 'UnsafeMutablePointer'
400 | let refcount = refcountPointer(for: o)
| | `- note: reference to let 'o' involves unsafe type 'UnsafeMutablePointer<HeapObject>'
| `- note: call to global function 'refcountPointer(for:)' involves unsafe type 'UnsafeMutablePointer<Int>'
401 | return loadAcquire(refcount) & HeapObject.refcountMask
| | `- note: reference to let 'refcount' involves unsafe type 'UnsafeMutablePointer<Int>'
| `- note: call to global function 'loadAcquire' involves unsafe type 'UnsafeMutablePointer<Int>'
402 | }
403 |
```
Note that we have lost a little bit of information, because we no
longer produce "unsafe declaration was here" notes pointing back at
things like `UnsafeMutablePointer` or `recountPointer(for:)`. However,
strict memory safety tends to be noisy to turn on, so it's worth
losing a little bit of easily-recovered information to gain some
brevity.