Internal configurations targeting Darwin employ ThinLTO to
improve compiler performance, however using it on all executable
causes build time to increase with no matching benefit.
To reduce build times in such configurations, we allow some
ancillary targets to opt out of LLVM IR optimizations when linking
ThinLTO with ld64 (e.g. tools used for bootstrapping or debugging the
Swift compiler) -- this behaviour is opt in through a new flag
`--swift-tools-ld64-lto-codegen-only-for-supporting-targets`.
Addresses rdar://76702687
This reverts commit a67a0436f7, reversing
changes made to 9965df76d0.
This commit or the earlier commit this commit is based on (#40531) broke the
incremental bot.
- Checkout apple/swift-experimental-string-processing using a tag.
- Build `_MatchingEngine` as part of libswift (`ExperimentalRegex`) using sources from the package.
- Parse regex literals using the parser from `_MatchingEngine`.
- Build both `_MatchingEngine` and `_StringProcessing` as part of core libs using sources from the package.
- Use `Regex<DynamicCaptures>` as the default regex type until we finalize apple/swift-experimental-string-processing#68.
* add an option to add freestanding to the Darwin platform, so that
to get expected compile behaviours (e.g. setting the install name)
* rework testing configuration to relax assumptions about freestanding
* add a preset to test such configuration (at least for PR testing)
Addresses rdar://85465396
These modules are part of the experimental declarative string processing feature. If accepted to the Standard Library, _StringProcessing will be available via implicit import just like _Concurrency, though _MatchingEngine will still be hidden as an implementation detail.
`_MatchingEngine` will contain the general-purpose pattern matching engine ISA, bytecode, and executor. `_StringProcessing` will contain regular expression and pattern matching APIs whose implementation depends on the matching engine..
Also consolidates frontend flag `-enable-experimental-regex` as `-enable-experimental-string-processing`.
Resolves rdar://85478647.
For historical reasons, we configure and build standard library targets
differently depending on whether `stdlib-deployment-targets` is no set or set to
`[]`.
Add a test to make this need more explicit.
Addresses rdar://81651877
* [Distributed] Initial distributed checking
* [Distributed] initial types shapes and conform to DistributedActor
* [Distributed] Require Codable params and return types
* [Distributed] initial synthesis of fields and constructors
* [Distributed] Field and initializer synthesis
* [Distributed] Codable requirement on distributed funcs; also handle <T: Codable>
* [Distributed] handle generic type params which are Codable in dist func
[Distributed] conformsToProtocol after all
* [Distributed] Implement remote flag on actors
* Implement remote flag on actors
* add test
* actor initializer that sets remote flag
[Distributed] conformances getting there
* [Distributed] dont require async throws; cleanup compile tests
* [Distributed] do not synthesize default implicit init, only our special ones
* [Distributed] properly synth inits and properties; mark actorTransport as _distributedActorIndependent
Also:
- do not synthesize default init() initializer for dist actor
* [Distributed] init(transport:) designated and typechecking
* [Distributed] dist actor initializers MUST delegate to local-init
* [Distributed] check if any ctors in delegation call init(transport:)
* [Distributed] check init(transport:) delegation through many inits; ban invoking init(resolve:using:) explicitly
* [Distributed] disable IRGen test for now
* [Distributed] Rebase cleanups
* [Concurrent] transport and address are concurrent value
* [Distributed] introduce -enable-experimental-distributed flag
* rebase adjustments again
* rebase again...
* [Distributed] distributed functions are implicitly async+throws outside the actor
* [Distributed] implicitly throwing and async distributed funcs
* remove printlns
* add more checks to implicit function test
* [Distributed] resolve initializer now marks the isRemote actor flag
* [Distributed] distributedActor_destroy invoked instead, rather than before normal
* [Distributed] Generate distributed thunk for actors
* [distributed] typechecking for _remote_ functions existing, add tests for remote funcs
* adding one XFAIL'ed task & actor lifetime test
The `executor_deinit1` test fails 100% of the time
(from what I've seen) so I thought we could track
and see when/if someone happens to fix this bug.
Also, added extra coverage for #36298 via `executor_deinit2`
* Fix a memory issue with actors in the runtime system, by @phausler
* add new test that now passes because of patch by @phausler
See previous commit in this PR.
Test is based on one from rdar://74281361
* fix all tests that require the _remote_ function stubs
* Do not infer @actorIndependent onto `let` decls
* REVERT_ME: remove some tests that hacky workarounds will fail
* another flaky test, help build toolchain
* [Distributed] experimental distributed implies experimental concurrency
* [Distributed] Allow distributed function that are not marked async or throws
* [Distributed] make attrs SIMPLE to get serialization generated
* [Distributed] ActorAddress must be Hashable
* [Distributed] Implement transport.actorReady call in local init
* cleanup after rebase
* [Distributed] add availability attributes to all distributed actor code
* cleanup - this fixed some things
* fixing up
* fixing up
* [Distributed] introduce new Distributed module
* [Distributed] diagnose when missing 'import _Distributed'
* [Distributed] make all tests import the module
* more docs on address
* [Distributed] fixup merge issues
* cleanup: remove unnecessary code for now SIMPLE attribute
* fix: fix getActorIsolationOfContext
* [Distributed] cmake: depend on _concurrency module
* fixing tests...
* Revert "another flaky test, help build toolchain"
This reverts commit 83ae6654dd.
* remove xfail
* clenup some IR and SIL tests
* cleanup
* [Distributed] fix cmake test and ScanDependencies/can_import_with_map.swift
* [Distributed] fix flags/build tests
* cleanup: use isDistributed wherever possible
* [Distributed] don't import Dispatch in tests
* dont link distributed in stdlib unittest
* trying always append distributed module
* cleanups
* [Distributed] move all tests to Distributed/ directory
* [lit] try to fix lit test discovery
* [Distributed] update tests after diagnostics for implicit async changed
* [Distributed] Disable remote func tests on Windows for now
* Review cleanups
* [Distributed] fix typo, fixes Concurrency/actor_isolation_objc.swift
* [Distributed] attributes are DistributedOnly (only)
* cleanup
* [Distributed] cleanup: rely on DistributedOnly for guarding the keyword
* Update include/swift/AST/ActorIsolation.h
Co-authored-by: Doug Gregor <dgregor@apple.com>
* introduce isAnyThunk, minor cleanup
* wip
* [Distributed] move some type checking to TypeCheckDistributed.cpp
* [TypeCheckAttr] remove extra debug info
* [Distributed/AutoDiff] fix SILDeclRef creation which caused AutoDiff issue
* cleanups
* [lit] remove json import from lit test suite, not needed after all
* [Distributed] distributed functions only in DistributedActor protocols
* [Distributed] fix flag overlap & build setting
* [Distributed] Simplify noteIsolatedActorMember to not take bool distributed param
* [Distributed] make __isRemote not public
* [Distributed] Fix availability and remove actor class tests
* [actorIndependent] do not apply actorIndependent implicitly to values where it would be illegal to apply
* [Distributed] disable tests until issue fixed
Co-authored-by: Dario Rexin <drexin@apple.com>
Co-authored-by: Kavon Farvardin <kfarvardin@apple.com>
Co-authored-by: Doug Gregor <dgregor@apple.com>
I am currently working on being able to build cmake build-script projects as
always being cross compiled by using toolchain files (1). CMake expects in means
that I need to be able to specify CMAKE_AR in said toolchain.
(1) We still build for the host machine (of course), but instead of building it
normally with cmake, we build it as if we are cross compiling meaning we are
cross compiling for the host on the host. This makes it so that the host build
is no longer different from cross compilation builds making Swift's cross
compilation build more robust since it will be tested and less mysterious.
* Revert "[Distributed] disable tests until issue fixed"
This reverts commit 0a04278920.
* Revert "[Distributed] Initial `distributed` actors and functions and new module (#37109)"
This reverts commit 814ede0cf3.
* [Distributed] Initial distributed checking
* [Distributed] initial types shapes and conform to DistributedActor
* [Distributed] Require Codable params and return types
* [Distributed] initial synthesis of fields and constructors
* [Distributed] Field and initializer synthesis
* [Distributed] Codable requirement on distributed funcs; also handle <T: Codable>
* [Distributed] handle generic type params which are Codable in dist func
[Distributed] conformsToProtocol after all
* [Distributed] Implement remote flag on actors
* Implement remote flag on actors
* add test
* actor initializer that sets remote flag
[Distributed] conformances getting there
* [Distributed] dont require async throws; cleanup compile tests
* [Distributed] do not synthesize default implicit init, only our special ones
* [Distributed] properly synth inits and properties; mark actorTransport as _distributedActorIndependent
Also:
- do not synthesize default init() initializer for dist actor
* [Distributed] init(transport:) designated and typechecking
* [Distributed] dist actor initializers MUST delegate to local-init
* [Distributed] check if any ctors in delegation call init(transport:)
* [Distributed] check init(transport:) delegation through many inits; ban invoking init(resolve:using:) explicitly
* [Distributed] disable IRGen test for now
* [Distributed] Rebase cleanups
* [Concurrent] transport and address are concurrent value
* [Distributed] introduce -enable-experimental-distributed flag
* rebase adjustments again
* rebase again...
* [Distributed] distributed functions are implicitly async+throws outside the actor
* [Distributed] implicitly throwing and async distributed funcs
* remove printlns
* add more checks to implicit function test
* [Distributed] resolve initializer now marks the isRemote actor flag
* [Distributed] distributedActor_destroy invoked instead, rather than before normal
* [Distributed] Generate distributed thunk for actors
* [distributed] typechecking for _remote_ functions existing, add tests for remote funcs
* adding one XFAIL'ed task & actor lifetime test
The `executor_deinit1` test fails 100% of the time
(from what I've seen) so I thought we could track
and see when/if someone happens to fix this bug.
Also, added extra coverage for #36298 via `executor_deinit2`
* Fix a memory issue with actors in the runtime system, by @phausler
* add new test that now passes because of patch by @phausler
See previous commit in this PR.
Test is based on one from rdar://74281361
* fix all tests that require the _remote_ function stubs
* Do not infer @actorIndependent onto `let` decls
* REVERT_ME: remove some tests that hacky workarounds will fail
* another flaky test, help build toolchain
* [Distributed] experimental distributed implies experimental concurrency
* [Distributed] Allow distributed function that are not marked async or throws
* [Distributed] make attrs SIMPLE to get serialization generated
* [Distributed] ActorAddress must be Hashable
* [Distributed] Implement transport.actorReady call in local init
* cleanup after rebase
* [Distributed] add availability attributes to all distributed actor code
* cleanup - this fixed some things
* fixing up
* fixing up
* [Distributed] introduce new Distributed module
* [Distributed] diagnose when missing 'import _Distributed'
* [Distributed] make all tests import the module
* more docs on address
* [Distributed] fixup merge issues
* cleanup: remove unnecessary code for now SIMPLE attribute
* fix: fix getActorIsolationOfContext
* [Distributed] cmake: depend on _concurrency module
* fixing tests...
* Revert "another flaky test, help build toolchain"
This reverts commit 83ae6654dd.
* remove xfail
* clenup some IR and SIL tests
* cleanup
* [Distributed] fix cmake test and ScanDependencies/can_import_with_map.swift
* [Distributed] fix flags/build tests
* cleanup: use isDistributed wherever possible
* [Distributed] don't import Dispatch in tests
* dont link distributed in stdlib unittest
* trying always append distributed module
* cleanups
* [Distributed] move all tests to Distributed/ directory
* [lit] try to fix lit test discovery
* [Distributed] update tests after diagnostics for implicit async changed
* [Distributed] Disable remote func tests on Windows for now
* Review cleanups
* [Distributed] fix typo, fixes Concurrency/actor_isolation_objc.swift
* [Distributed] attributes are DistributedOnly (only)
* cleanup
* [Distributed] cleanup: rely on DistributedOnly for guarding the keyword
* Update include/swift/AST/ActorIsolation.h
Co-authored-by: Doug Gregor <dgregor@apple.com>
* introduce isAnyThunk, minor cleanup
* wip
* [Distributed] move some type checking to TypeCheckDistributed.cpp
* [TypeCheckAttr] remove extra debug info
* [Distributed/AutoDiff] fix SILDeclRef creation which caused AutoDiff issue
* cleanups
* [lit] remove json import from lit test suite, not needed after all
* [Distributed] distributed functions only in DistributedActor protocols
* [Distributed] fix flag overlap & build setting
* [Distributed] Simplify noteIsolatedActorMember to not take bool distributed param
* [Distributed] make __isRemote not public
Co-authored-by: Dario Rexin <drexin@apple.com>
Co-authored-by: Kavon Farvardin <kfarvardin@apple.com>
Co-authored-by: Doug Gregor <dgregor@apple.com>
This is to support certain build configuration which will provide the
stdlib/runtime for the cross target by a different means.
Addresses rdar://74188174, rdar://74154062
There's no reason to use -m${platform}-version-min as of clang-11/Xcode 11. Clang is now smart enough to parse -target and provide Apple's ld with the appropriate -platform_version argument string.
The experimental concurrency model will require a supporting runtime
and possibly end-user-visible library constructs. Introduce a stub of
such a library, enabled by a new `build-script` option
`--enable-experimental-concurrency`, so we have a place to put this
work.
Some notes:
* I am purposely trying to not do something too crazy here. My hope is that this
can tied us over until we can remove a bunch of build-script logic (after
build-script-impl is destroyed).
* Given this need for simplicity, I purposely did something really simple: I
assumed the build-graph was a DAG. This makes it really easy to compute a
topological ordering just by computing RPOT numbers from POT numbers. That is
what I did in this implementation.
I haven't wired it up to anything and just added a simple test that shows how it
can properly infer from a toy dependency tree the dependencies of a "toy
swiftpm" project.
This commit adds initial build system support for macCatalyst,
an Apple technology that enables code targeting iOS
to be recompiled so that it can be executed on macOS while still using
iOS APIs. This is the first in a series of commits building out support for
macCatalyst in the compiler, runtime, standard library, and overlays. Swift
for macCatalyst represents the work of multiple people, including
Devin Coughlin, Ross Bayer, and Brent Royal-Gordon.
Under macCatalyst, compiler-provided shared libraries (including overlays)
are built as one of four kinds (or "flavors") of libraries,
each with different install names and Mach-O load commands. This commit
adds the build system infrastructure to produce these different
library flavors.
**macOS-like Libraries**
A "macOS-like" library (such as the GLKit overlay) is a plain-old macOS library
that can only be loaded into regular macOS processes. It has a macOS slice with
a single load command allowing it to be loaded into normal macOS processes.
**iOS-like Libraries**
An "iOS-like" library, such as the UIKit overlay, is a library with a
macOS slice but with a load command that only allows it be loaded into
macCatalyst processes. iOS-like libraries are produced by passing a new
target tuple to the compiler:
swiftc ... -target x86_64-apple-ios13.0-macabi ...
Here 'ios' (and an iOS version number) is used for OS portion
of the triple, but the 'macabi' environment tells the compiler
that the library is intended for macCatalyst.
**Zippered Libraries**
A "zippered" library can be loaded into either a macCatalyst process or
a standard macOS process. Since macCatalyst does not introduce a new Mach-O
slice, the same code is shared between both processes. Zippered libraries
are usually relatively low level and with an API surface that is similar
between macOS and iOS (for example, both the Foundation overlay and the Swift
Standard Library/Runtime itself are zippered).
Zippered libraries are created by passing both the usual `-target`
flag to the compiler and an additional `-target-variant` flag:
swiftc ... -target x86_64-apple-macos10.15 \
-target-variant x86_64-apple-ios13.0-macabi
Just like the -target flag, -target-variant takes a target tuple.
This tells the compiler to compile the library for the -target tuple but
to add an extra load command, allowing the library to be loaded into processes
of the -target-variant flavor as well.
While a single zippered library and slice is shared between macOS and
macCatalyst, zippered libraries require two separate .swiftinterface/.swiftmodule
files, one for macOS and one for macCatalyst. When a macOS or macCatalyst client
imports the library, it will use module file for its flavor to determine what
symbols are present. This enables a zippered library to expose a subset of its
target APIs to its target-variant.
**Unzippered-Twin Libraries**
"Unzippered Twins" are pairs of libraries with the same name but different
contents and install locations, one for use from macOS processes and one for
use from macCatalyst processes. Unzippered twins are usually libraries that
depend on AppKit on macOS and UIKit on iOS (for example, the MapKit overlay)
and so do not share a common implementation between macOS and macCatalyst.
The macCatalyst version of an unzippered twin is installed in a parallel
directory hierarchy rooted at /System/iOSSupport/. So, for example, while macOS
and zippered Swift overlays are installed in /usr/lib/swift/, iOS-like and
the macCatalyst side of unzippered twins are installed in
/System/iOSSupport/usr/lib/swift. When building for macCatalyst, the build system
passes additional search paths so that the macCatalyst version of libraries is
found before macOS versions.
The add_swift_target_library() funciton now take an
optional MACCATALYST_BUILD_FLAVOR, which enables swift libraries to indicate
which flavor of library they are.
This new module uses the build_swift.shell.ExecutableWrapper API to create a wrapper class around 'xcrun'. The wrapper class is instantiated and exposed under the name build_swift.wrappers.xcrun.
Add `--enable-experimental-differentiable-programming` build-script flag.
The build-script flag enables/disables standard library additions
related to differentiable programming. This will allow official Swift
releases to disable these additions.
The build-script flag is on by default to ensure testing of
differentiable programming standard library additions. An additional
driver flag must be enabled to use differentiable programming features:
https://github.com/apple/swift/pull/27446
- Forward several environment variables to the test environment because
Windows uses them to inform the processes about things like the number
of processors and the architecture.
- Normalize some literal Unix paths to be the same as the results in
Windows, that will have forward slashes and the drive letter.
- Skip some test that use build-script-impl and tests that check for
files being executable (everything is executable in Windows).
- Don't use the owner and group arguments for tar on Windows.
- Hide the stderr output of which. In Windows it prints the full PATH in
case of failures, which is disrupting.
- Quote many paths in Windows in the output of build-script results.
- Provide a version of mock-distcc that can be executed in Windows. The
raw Python script cannot.
- Change the expected results for clang/clang++ to the right values in
Windows (clang-cl in both cases).