Specifically, improved debug info retention in:
* tryReplaceRedundantInstructionPair,
* splitAggregateLoad,
* TempLValueElimination,
* Mem2Reg,
* ConstantFolding.
The changes to Mem2Reg allow debug info to be retained in the case tested by
self-nostorage.swift in -O builds, so we have just enabled -O in that file
instead of writing a new test for it.
We attempted to add a case to salvageDebugInfo for unchecked_enum_data, but it
caused crashes in Linux CI that we were not able to reproduce.
Refactor certain functions to make them simpler. and avoid calling
AST.Type.loweredType, which can fail. Instead, access the types of the
function's (SIL) arguments directly.
Correctly handle exploding packs that contain generic or opaque types by using
AST.Type.mapOutOfEnvironment().
@substituted types cause the shouldExplode predicate to be unreliable for AST
types, so restrict it to just SIL.Type. Add test cases for functions that have
@substituted types.
Re-enable PackSpecialization in FunctionPass pipeline.
Add a check to avoid emitting a destructure_tuple of the original function's
return tuple when it is void/().
Usually `explicit_copy_addr` and `explicit_copy_value` don't survive until the first SILCombine pass run anyway.
But if they do, the simplifications need to be registered, otherwise SILCombine will complain.
This is needed in Embedded Swift because the `witness_method` convention requires passing the witness table to the callee.
However, the witness table is not necessarily available.
A witness table is only generated if an existential value of a protocol is created.
This is a rare situation because only witness thunks have `witness_method` convention and those thunks are created as "transparent" functions, which means they are always inlined (after de-virtualization of a witness method call).
However, inlining - even of transparent functions - can fail for some reasons.
This change adds a new EmbeddedWitnessCallSpecialization pass:
If a function with `witness_method` convention is directly called, the function is specialized by changing the convention to `method` and the call is replaced by a call to the specialized function:
```
%1 = function_ref @callee : $@convention(witness_method: P) (@guaranteed C) -> ()
%2 = apply %1(%0) : $@convention(witness_method: P) (@guaranteed C) -> ()
...
sil [ossa] @callee : $@convention(witness_method: P) (@guaranteed C) -> () {
...
}
```
->
```
%1 = function_ref @$e6calleeTfr9 : $@convention(method) (@guaranteed C) -> ()
%2 = apply %1(%0) : $@convention(method) (@guaranteed C) -> ()
...
// specialized callee
sil shared [ossa] @$e6calleeTfr9 : $@convention(method) (@guaranteed C) -> () {
...
}
```
Fixes a compiler crash
rdar://165184147
It eliminates dead access scopes if they are not conflicting with other scopes.
Removes:
```
%2 = begin_access [modify] [dynamic] %1
... // no uses of %2
end_access %2
```
However, dead _conflicting_ access scopes are not removed.
If a conflicting scope becomes dead because an optimization e.g. removed a load, it is still important to get an access violation at runtime.
Even a propagated value of a redundant load from a conflicting scope is undefined.
```
%2 = begin_access [modify] [dynamic] %1
store %x to %2
%3 = begin_access [read] [dynamic] %1 // conflicting with %2!
%y = load %3
end_access %3
end_access %2
use(%y)
```
After redundant-load-elimination:
```
%2 = begin_access [modify] [dynamic] %1
store %x to %2
%3 = begin_access [read] [dynamic] %1 // now dead, but still conflicting with %2
end_access %3
end_access %2
use(%x) // propagated from the store, but undefined here!
```
In this case the scope `%3` is not removed because it's important to get an access violation error at runtime before the undefined value `%x` is used.
This pass considers potential conflicting access scopes in called functions.
But it does not consider potential conflicting access in callers (because it can't!).
However, optimizations, like redundant-load-elimination, can only do such transformations if the outer access scope is within the function, e.g.
```
bb0(%0 : $*T): // an inout from a conflicting scope in the caller
store %x to %0
%3 = begin_access [read] [dynamic] %1
%y = load %3 // cannot be propagated because it cannot be proved that %1 is the same address as %0
end_access %3
```
All those checks are only done for dynamic access scopes, because they matter for runtime exclusivity checking.
Dead static scopes are removed unconditionally.
It checks if arbitrary functions may be called by an instruction.
This can be either directly, e.g. by an `apply` instruction, or indirectly by destroying a value which might have a deinitializer which can call functions.
This also required me to change how we handled which instruction/argument we
emit an error about in the verifier. Previously we were using two global
variables that we made nullptr to control which thing we emitted an error about.
This was unnecessary. Instead I added a little helper struct that internally
controls what we will emit an error about and an external "guard" RAII struct
that makes sure we push/pop the instruction/argument we are erroring upon
correctly.
This is wrong for hoisted load instructions because we don't check for aliasing in the pre-header.
And for side-effect-free instructions it's not really necessary, because that can cleanup CSE afterwards.
Fixes a miscompile
rdar://164034503
The `shouldExpand` in `OptUtils.swift` was incorrectly returning `true`
unconditionally when `useAggressiveReg2MemForCodeSize` was disabled. The
expansion might be invalid for types with addr-only types and structs
with deinit, but we didn't check them before. This could lead to invalid
`destructure_struct` instructions without `drop_deinit` being emitted.
Teach SIL type lowering to recursively track custom vs. default deinit status.
Determine whether each type recursively only has default deinitialization. This
includes any recursive deinitializers that may be invoked by releasing a
reference held by this type.
If a type only has default deinitialization, then the deinitializer cannot
have any semantically-visible side effects. It cannot write to any memory
This showed up on and off again on the source-compatibility testsuite project hummingbird.
The gist of the problem is that transformations may not rewrite the
type of an inlined instance of a variable without also createing a
deep copy of the inlined function with a different name (and e.g., a
specialization suffix). Otherwise the modified inlined variable will
cause an inconsistency when later compiler passes try to create the
abstract declaration of that inlined function as there would be
conflicting declarations for that variable.
Since SILDebugScope isn't yet available in the SwiftCompilerSources
this fix just drop these variables, but it would be absolutely
possible to preserve them by using the same mechanism that SILCloner
uses to create a deep copy of the inlined function scopes.
rdar://163167975
It hoists `destroy_value` instructions for non-lexical values.
```
%1 = some_ownedValue
...
last_use(%1)
... // other instructions
destroy_value %1
```
->
```
%1 = some_ownedValue
...
last_use(%1)
destroy_value %1 // <- moved after the last use
... // other instructions
```
In contrast to non-mandatory optimization passes, this is the only pass which hoists destroys over deinit-barriers.
This ensures consistent behavior in -Onone and optimized builds.