This attribute was introduced in
7eca38ce76d5d1915f4ab7e665964062c0b37697 (llvm-project).
Match it using a wildcard regex, since it is not relevant to these
tests.
This is intended to reduce future conflicts with rebranch.
The old syntax was
@opened("UUID") constraintType
Where constraintType was the right hand side of a conformance requirement.
This would always create an archetype where the interface type was `Self`,
so it couldn't cope with member types of opened existential types.
Member types of opened existential types is now a thing with SE-0309, so
this lack of support prevented writing SIL test cases using this feature.
The new syntax is
@opened("UUID", constraintType) interfaceType
The interfaceType is a type parameter rooted in an implicit `Self`
generic parameter, which is understood to be the underlying type of the
existential.
Fixes rdar://problem/93771238.
This adds the dllstorage annotations on the tests. This first pass gets
most of the IRGen tests passing on Windows (though has dependencies on
other changes). However, this allows for the changes to be merged more
easily as we cannot regress other platforms here.
Once we move to a copy-on-write implementation of existential value buffers we
can no longer consume or destroy values of an opened existential unless the
buffer is uniquely owned.
Therefore we need to track the allowed operation on opened values.
Add qualifiers "mutable_access" and "immutable_access" to open_existential_addr
instructions to indicate the allowed access to the opened value.
Once we move to a copy-on-write implementation, an "open_existential_addr
mutable_access" instruction will ensure unique ownership of the value buffer.
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.
Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.
Use the 'swiftself' attribute on self parameters and for closures contexts.
Use the 'swifterror' parameter for swift error parameters.
Change functions in the runtime that are called as native swift functions to use
the swift calling convention.
rdar://19978563
When we optimize existential buffer allocation we stored a ContainedAddress (container and
uninitialized address) if we delay the buffer allocation to the first copy_addr [init].
Allocate buffers for local generic/resilient values on the stack. alloc_stack
instructions in the entry block are translated using a dynamic alloca
instruction with variables size. All other alloc_stack instructions in addition
use llvm's stacksave/restore instrinsics to reset the stack (they could be
executed multiple times and with varying sizes).
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
This prevents the linker from trying to emit relative relocations to locally-defined public symbols into dynamic libraries, which gives ld.so heartache.
Having a separate address and container value returned from alloc_stack is not really needed in SIL.
Even if they differ we have both addresses available during IRGen, because a dealloc_stack is always dominated by the corresponding alloc_stack in the same function.
Although this commit quite large, most changes are trivial. The largest non-trivial change is in IRGenSIL.
This commit is a NFC regarding the generated code. Even the generated SIL is the same (except removed #0, #1 and @local_storage).
We can simultaneously allocate and initialize an opaque existential container's fixed-size buffer the same way, which benefits conversions from generic types to protocol types.
Swift SVN r29371