Introduce Fix-Its to aid migration from selectors spelled as string
literals ("foo:bar:", which is deprecated), as well as from
construction of Selector instances from string literals
(Selector("foo:bar"), which is still acceptable but not recommended),
to the #selector syntax. Jump through some hoops to disambiguate
method references if there are overloads:
fixits.swift:51:7: warning: use of string literal for Objective-C
selectors is deprecated; use '#selector' instead
_ = "overloadedWithInt:" as Selector
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#selector(Bar.overloaded(_:) as (Bar) -> (Int) -> ())
In the cases where we cannot provide a Fix-It to a #selector
expression, we wrap the string literal in a Selector(...) construction
to suppress the deprecation warning. These are also easily searchable
in the code base.
This also means we're doing more validation of the string literals
that go into Selector, i.e., that they are well-formed selectors and
that we know about some method that is @objc and has that
selector. We'll warn if either is untrue.
Various interface-printing facilities use getTopLevelDecls to
enumerate the top-level declarations of a given module. For modules
imported from Clang, this walked a giant cached list of all
declarations known from Clang, then filtered out those that didn't
fit. Instead, just use the information provided by the Swift name
lookup tables, which is inherently module-specific and complete.
Fixes rdar://problem/14776565 (AnyObject lookup for Objective-C
properties with custom getters) and rdar://problem/17184411 (allowing
__attribute__((swift_name("foo"))) to work on anything).
We decided not to support "implicit" properties, where we import
getter/setter pairs as properties. Rather, we only import a property
when there is an explicit "@property" in Objective-C. Remove the flag
and supporting code for implicit properties.
Most of this is in updating the standard library, SDK overlays, and
piles of test cases to use the new names. No surprises here, although
this shows us some potential heuristic tweaks.
There is one substantive compiler change that needs to be factored out
involving synthesizing calls to copyWithZone()/copy(zone:). Aside from
that, there are four failing tests:
Swift :: ClangModules/objc_parse.swift
Swift :: Interpreter/SDK/Foundation_test.swift
Swift :: Interpreter/SDK/archiving_generic_swift_class.swift
Swift :: Interpreter/SDK/objc_currying.swift
due to two independent remaining compiler bugs:
* We're not getting partial ordering between NSCoder's
encode(AnyObject, forKey: String) and NSKeyedArchiver's version of
that method, and
* Dynamic lookup (into AnyObject) doesn't know how to find the new
names. We need the Swift name lookup tables enabled to address this.
When we parse a bridging header, start building a mapping from Swift
names (both base names and full names) to the Clang declarations that
have those names in particular Clang contexts. For now, just provide
the ability to build the table (barely) and dump it out; we'll grow
it's contents in time.
When auto-completing import decls, we should prioritize not-yet imported modules
over already-imported modules. To do so, we mark the latter with not-recommended tag.
My temporary hackery around inferring default arguments from imported
APIs was too horrible. Make it slightly more sane by:
1) Actually marking these as default arguments in the type system,
rather than doing everything outside of the type system. This is a
step closer to what we would really do, if we go in this
direction. Put it behind the new -frontend flag
-enable-infer-default-arguments.
2) Only inferring a default argument from option sets and from
explicitly "nullable" parameters, as stated in the (Objective-)C API
or API notes. This eliminates a pile of spurious, non-sensical "=
nil"'s in the resulting output.
Note that there is one ugly tweak to the overloading rules to prefer
declarations with fewer defaulted arguments. This is a bad
implementation of what is probably a reasonable rule (prefer to bind
fewer default arguments), which intentionally only kicks in when we're
dealing with imported APIs that have default arguments.
Swift SVN r32078
The -enable-omit-needless-words option attempts to omit needless words
from method names imported from Clang. Broadly speaking, a word is
needless if it merely restates the type of the corresponding parameter,
using reverse camel-case matching of the type name to the
function/parameter name. The word "With" is also considered needless
if whether follows it is needless, e.g.,
func copyWithZone(zone: NSZone)
gets reduced to
func copy(zone: NSZone)
because "Zone" merely restates type information and the remaining,
trailing "With" is also needless.
There are some special type naming rules for builtin Objective-C types,
e.g.,
id -> "Object"
SEL -> "Selector"
Block pointer types -> "Block"
as well as some very-Cocoa-specific matching rules, e.g., the type
"IndexSet" matches the name "Indexes" or "Indices".
Expect a lot of churn with these heuristics; this is part of
rdar://problem/22232287.
Swift SVN r31178
This should have no functionality change, but is supposed to keep us from
accidentally relying on the "full" Clang importer when in a backend job.
I tested it by archiving a little iOS app from a developer.
Unfortunately, part of the motivation here was that we'd get error messages when
we pass something Clang doesn't like, and that doesn't seem to be happening.
rdar://problem/21389553
Swift SVN r30407
This is a hack.
We currently don't put anything in Clang submodules; they're just wrappers
to track what is and isn't visible. All lookups happen through the top-
level module.
This commit adds a new API getImportedModulesForLookup, which is ONLY used
by top-level name lookup and forAllVisibleModules. It is identical to
getImportedModules for everything but ClangModuleUnits, which instead
compute and cache a list of their transitively imported top-level modules.
This speeds up building Foundation.swiftmodule with a release compiler by
a bit more than 5%, and makes a previously lookup-bound test case compile
a third faster than before.
This is a hack.
rdar://problem/20813240
Swift SVN r28598
Reverts r28087. We're going back to the C++ interface for SIMD, and the changes in this patch are needless complication for that design.
Swift SVN r28384
Instead of importing everything and filtering later (so all of clang modules get deserialized and associated Swift decls get created),
lazily import as Swift decls only the Clang decls that we need from a particular header.
This also fixes printing ObjC categories in the header as Swift extensions.
Swift SVN r28358
Modules occupy a weird space in the AST now: they can be treated like
types (Swift.Int), which is captured by ModuleType. They can be
treated like values for disambiguation (Swift.print), which is
captured by ModuleExpr. And we jump through hoops in various places to
store "either a module or a decl".
Start cleaning this up by transforming Module into ModuleDecl, a
TypeDecl that's implicitly created to describe a module. Subsequent
changes will start folding away the special cases (ModuleExpr ->
DeclRefExpr, name lookup results stop having a separate Module case,
etc.).
Note that the Module -> ModuleDecl typedef is there to limit the
changes needed. Much of this patch is actually dealing with the fact
that Module used to have Ctx and Name public members that now need to
be accessed via getASTContext() and getName(), respectively.
Swift SVN r28284
The design we landed on for SIMD is to define the vector types as nested types of their element, e.g. Float.Vector4, Int32.Vector2, etc. Update the Clang importer and other mapping facilities to match.
Swift SVN r28087
Now that we can pick up search paths from frameworks (necessary to debug
them properly), we can end up with exponential explosions leading to the
same search path coming up thousands of times, which destroys compilation
time /and/ debugger responsiveness. This is already hitting people with
frameworks compiled for app extensions (due to a mistaken approximation
of whether or not something is a framework), but we're turning this on for
all frameworks in the immediate future.
rdar://problem/20291720
Swift SVN r27087
There's also a testing option, -serialize-debugging-options, to force this
extra info to be serialized even for library targets. In the long run we'll
probably write out this information for all targets, but strip it out of
the "public module" when a framework is built. (That way it ends up in the
debug info's copy of the module.)
Incidentally, this commit includes the ability to add search paths to the
Clang importer on the fly, which is most of rdar://problem/16347147.
Unfortunately there's no centralized way to add search paths to both Clang
/and/ Swift at the moment.
Part of rdar://problem/17670778
Swift SVN r24545