As a first foray into annotating attribute, add tags around attribute
names. For now, treat any decl-modifiers as keywords. We will also want
to wrap the whole attribute (including any parameters) into tags as
well, but that will require more work in the callback hanlding.
Also factor the attribute printing to handle any special cases early,
which will simplify wrapping attributes in tags, since we can then just
put the whole switch intside the pre/post callbacks.
rdar://problem/24292226
This class formalizes the common case of the "trailing allocation" idiom we use
frequently. I didn't spot any true bugs while making this change, but I did see
places where we were using the wrong pointer type or casting through void* for
no good reason. This will keep us honest.
I'll get to the other libraries soon.
Introduce a new attribute, swift3_migration, that lets us describe the
transformation required to map a Swift 2.x API into its Swift 3
equivalent. The only transformation understood now is "renamed" (to
some other declaration name), but there's a message field where we can
record information about other changes. The attribute can grow
somewhat (e.g., to represent parameter reordering) as we need it.
Right now, we do nothing but store and validate this attribute.
This reflects the fact that the attribute's only for compiler-internal use, and isn't really equivalent to C's asm attribute, since it doesn't change the calling convention to be C-compatible.
We were screwing up mutating_variant-only printing (with an extra ",
") and not properly adding the space after the attribute. Fixes
rdar://problem/21111641.
Swift SVN r29044
Reapply r28734. Argyrios updated SourceKit dependencies on swift and clang libraries in
SourceKit r28765, so this should work now.
Change the AST printer to use the new short-form @available attribute syntax for
attributes with only introduction versions. So, for example, a declaration
annotated as:
@available(iOS, introduced=8.0) @available(OSX, introduced=10.10)
func foo()
will be printed as:
@available(iOS 8.0, OSX 10.10, *) func foo()
We won't include the attribute on the short form if it has a deprecated or
obsoleted version; nor if it has a message, a rename, or marks unconditional
unavailability.
This commit has a corresponding change to the SourceKit tests.
rdar://problem/20982322
Swift SVN r28768
Change the AST printer to use the new short-form @available attribute syntax for
attributes with only introduction versions. So, for example, a declaration
annotated as:
@available(iOS, introduced=8.0)
@available(OSX, introduced=10.10)
func foo()
will be printed as:
@available(iOS 8.0, OSX 10.10, *)
func foo()
We won't include the attribute on the short form if it has a deprecated or
obsoleted version; nor if it has a message, a rename, or marks unconditional
unavailability.
There is a corresponding change to the SourceKit tests.
rdar://problem/20982322
Swift SVN r28734
This came out of today's language review meeting.
The intent is to match #available with the attribute
that describes availability.
This is a divergence from Objective-C.
Swift SVN r28484
Rather than swizzle the superclass of these bridging classes at +load time, have the compiler set their ObjC runtime base classes, using a "@_swift_native_objc_runtime_base" attribute that tells the compiler to use a different implicit base class from SwiftObject. This lets the runtime shed its last lingering +loads, and should overall be more robust, since it doesn't rely on static initialization order or deprecated ObjC runtime calls.
Swift SVN r28219
@warn_unused_result can be attached to function declarations to
produce a warning if the function is called but its result is not
used. It has two optional parameters that can be placed in
parentheses:
message="some message": a message to include with the warning.
mutable_variant="somedecl": the name of the mutable variant of the
method that should be suggested when the subject method is called on
a mutable value.
The specific use we're implementing this for now is for the mutating
and in-place operations. For example:
@warn_unused_result(mutable_variant="sortInPlace") func sort() -> [Generator.Element] { ... }
mutating func sortInPlace() { ... }
Translate Clang's __attribute__((warn_unused_result)) into
@warn_unused_result.
Implements rdar://problem/18165189.
Swift SVN r28019
Allow an unversioned 'deprecated' attribute to specify unconditional
deprecation of an API, e.g.,
@availability(*, deprecated, message="sorry")
func foo() { }
Also support platform-specific deprecation, e.g.,
@availability(iOS, deprecated, message="don't use this on iOS")
func bar() { }
Addresses rdar://problem/20562871.
Swift SVN r27355
Allow an unversioned 'deprecated' attribute to specify unconditional
deprecation of an API, e.g.,
@availability(*, deprecated, message="sorry")
func foo() { }
Also support platform-specific deprecation, e.g.,
@availability(iOS, deprecated, message="don't use this on iOS")
func bar() { }
Addresses rdar://problem/20562871.
Swift SVN r27339
This is an internal-only affordance for the numerics team to be able to work on SIMD-compatible types. For now, it can only increase alignment of fixed-layout structs and enums; dynamic layout, classes, and other obvious extensions are left to another day when we can design a proper layout control design.
Swift SVN r27323
This is the new and improved version of
__attribute__((annotate("swift1_unavailable"))), with the "improved" being
specifically that the 'availability' attribute supports a message.
This requires a corresponding Clang commit.
Swift side of rdar://problem/18768673.
Swift SVN r27053
This lets us tag imported declarations with arbitrary synthesized
protocols. Use it to handle imported raw option sets as well as the
RawRepresentable conformances of enums that come in as structs.
Swift SVN r26298
Emit a warning when the developer uses an API that has been marked deprecated with an
availability attribute. Following the Clang behavior, we will only warn if the API is
deprecated on all deployment targets. For example, if an API is deprecated as of
OS X 10.11 but the minimum deployment target is 10.10 then no warning will be emitted.
rdar://problem/17406050
Swift SVN r25288
This has been long in coming. We always had it in IRGenOpts (in string form).
We had the version number in LangOpts for availability purposes. We had to
pass IRGenOpts to the ClangImporter to actually create the right target.
Some of our semantic checks tested the current OS by looking at the "os"
target configuration! And we're about to need to serialize the target for
debugging purposes.
Swift SVN r24468
@objc methods, initializers, deinitializers, properties, and
subscripts all produce Objective-C methods. Diagnose cases where two
such entities (which may be of different kinds) produce the same
Objective-C method in the same class.
As a special exception, one can have an Objective-C method in an
extension that conflicts with an Objective-C method in the original
class definition, so long as the original class definition is from a
different model. This reflects the reality in Objective-C that the
category definition wins over the original definition, and is used in
at least one overlay (SpriteKit).
This is the first part of rdar://problem/18391046; the second part
involves checking that overrides are sane.
Swift SVN r23147
This will let the performance inliner inline a function even if the costs are too high.
This attribute is only a hint to the inliner.
If the inliner has other good reasons not to inline a function,
it will ignore this attribute. For example if it is a recursive function (which is
currently not supported by the inliner).
Note that setting the inline threshold to 0 does disable performance inlining at all and in
this case also the @inline(__always) has no effect.
Swift SVN r21452
Introduce an attribute that describes when a given CF type is
toll-free-bridged to an Objective-C class, and which class that
is. Use that information in the type checker to provide the CF <->
Objective-C toll-free-bridged conversions directly, rather than using
the user-defined conversion machinery.
Swift SVN r21376
This disables inlining at the SIL level. LLVM inlining is still enabled. We can
use this to expose one function at the SIL level - which can participate in
dominance based optimizations but which is implemented in terms of a cheap check
and an expensive check (function call) that benefits from LLVM's inlining.
Example:
The inline(late) in the example below prevents inlining of the two checks. We
can now perform dominance based optimizations on isClassOrObjExistential.
Without blocking inlining the optimizations would apply to the sizeof check
only and we would have multiple expensive function calls.
@inline(late)
func isClassOrObjExistential(t: Type) -> Bool{
return sizeof(t) == sizeof(AnyObject) &&
swift_isClassOrObjExistential(t)
}
We do want inlining of this function to happen at the LLVM level because the
first check is constant folded away - IRGen replaces sizeof by constants.
rdar://17961249
Swift SVN r21286