Parameters (to methods, initializers, accessors, subscripts, etc) have always been represented
as Pattern's (of a particular sort), stemming from an early design direction that was abandoned.
Being built on top of patterns leads to patterns being overly complicated (e.g. tuple patterns
have to have varargs and default parameters) and make working on parameter lists complicated
and error prone. This might have been ok in 2015, but there is no way we can live like this in
2016.
Instead of using Patterns, carve out a new ParameterList and Parameter type to represent all the
parameter specific stuff. This simplifies many things and allows a lot of simplifications.
Unfortunately, I wasn't able to do this very incrementally, so this is a huge patch. The good
news is that it erases a ton of code, and the technical debt that went with it. Ignoring test
suite changes, we have:
77 files changed, 2359 insertions(+), 3221 deletions(-)
This patch also makes a bunch of wierd things dead, but I'll sweep those out in follow-on
patches.
Fixes <rdar://problem/22846558> No code completions in Foo( when Foo has error type
Fixes <rdar://problem/24026538> Slight regression in generated header, which I filed to go with 3a23d75.
Fixes an overloading bug involving default arguments and curried functions (see the diff to
Constraints/diagnostics.swift, which we now correctly accept).
Fixes cases where problems with parameters would get emitted multiple times, e.g. in the
test/Parse/subscripting.swift testcase.
The source range for ParamDecl now includes its type, which permutes some of the IDE / SourceModel tests
(for the better, I think).
Eliminates the bogus "type annotation missing in pattern" error message when a type isn't
specified for a parameter (see test/decl/func/functions.swift).
This now consistently parenthesizes argument lists in function types, which leads to many diffs in the
SILGen tests among others.
This does break the "sibling indentation" test in SourceKit/CodeFormat/indent-sibling.swift, and
I haven't been able to figure it out. Given that this is experimental functionality anyway,
I'm just XFAILing the test for now. i'll look at it separately from this mongo diff.
is used by precisely one thing (producing a warning in a scenario that is obsolete
because we deprecated the entire thing), so the complexity isn't worth it anymore.
There was previously no way to detect a type that is nominally
Optional at runtime. The standard library, namely OutputStream, needs
to handle Optionals specially in order to cirumvent conversion to the
Optional's wrapped type. This should be done with conditional
conformance, but until that feature is available, Builtin.isOptional
will serve as a useful crutch.
_unsafeCastReference allows casting of any references types, regardless
of whether they are references to objects or class existentials. The
implementation is responsible for converting between representations.
_unsafeCastReference provides a dynamic check to ensure that the source
and dest are both actually references. If not, the implementation will
trap at runtime. Generally, the optimizer can prove that the source
and dest are references, and promote this cast to an
unchecked_ref_cast bitcast. There is no dynamic check that the
references types are compatible.
This differs from unsafeDownCast in two ways:
(1) The source and dest types are not statically typed
AnyObjects. Therefore, unsafeCastReference can be used when the
surrounding code dynamically handles both reference and nonreference
types.
(2) The source and dest also need not dynamically conform to AnyObject.
Either side of the cast may be a class existential. The primary
requirement is that the source and dest refer to the same reference
counted object.
Swift SVN r32588
This matches how dispatch_once works in C, dramatically cutting the cost of a global accessor by avoiding the runtime call in the hot path and giving the global a unique branch for the CPU to predict away. For now, only do this for Darwin; non-ObjC platforms don't necessarily expose their "done" value as ABI like ours do.
While we're here, change "once" to take a thin function pointer. We don't ever emit global initializers with context dependencies, and this simplifies the runtime glue between swift_once and dispatch_once/std::call_once a bit.
Swift SVN r28166
Preparation to fix <rdar://problem/18151694> Add Builtin.checkUnique
to avoid lost Array copies.
This adds the following new builtins:
isUnique : <T> (inout T[?]) -> Int1
isUniqueOrPinned : <T> (inout T[?]) -> Int1
These builtins take an inout object reference and return a
boolean. Passing the reference inout forces the optimizer to preserve
a retain distinct from what’s required to maintain lifetime for any of
the reference's source-level copies, because the called function is
allowed to replace the reference, thereby releasing the referent.
Before this change, the API entry points for uniqueness checking
already took an inout reference. However, after full inlining, it was
possible for two source-level variables that reference the same object
to appear to be the same variable from the optimizer's perspective
because an address to the variable was longer taken at the point of
checking uniqueness. Consequently the optimizer could remove
"redundant" copies which were actually needed to implement
copy-on-write semantics. With a builtin, the variable whose reference
is being checked for uniqueness appears mutable at the level of an
individual SIL instruction.
The kind of reference count checking that Builtin.isUnique performs
depends on the argument type:
- Native object types are directly checked by reading the
strong reference count:
(Builtin.NativeObject, known native class reference)
- Objective-C object types require an additional check that the
dynamic object type uses native swift reference counting:
(Builtin.UnknownObject, unknown class reference, class existential)
- Bridged object types allow the dymanic object type check to be
bypassed based on the pointer encoding:
(Builtin.BridgeObject)
Any of the above types may also be wrapped in an optional. If the
static argument type is optional, then a null check is also performed.
Thus, isUnique only returns true for non-null, native swift object
references with a strong reference count of one.
isUniqueOrPinned has the same semantics as isUnique except that it
also returns true if the object is marked pinned regardless of the
reference count. This allows for simultaneous non-structural
modification of multiple subobjects.
In some cases, the standard library can dynamically determine that it
has a native reference even though the static type is a bridge or
unknown object. Unsafe variants of the builtin are available to allow
the additional pointer bit mask and dynamic class lookup to be
bypassed in these cases:
isUnique_native : <T> (inout T[?]) -> Int1
isUniqueOrPinned_native : <T> (inout T[?]) -> Int1
These builtins perform an implicit cast to NativeObject before
checking uniqueness. There’s no way at SIL level to cast the address
of a reference, so we need to encapsulate this operation as part of
the builtin.
Swift SVN r27887
Calls to willThrow are marked as read-none so that the optimizer can remove
them. The willThrow builtin is still generated for all throw/rethrow sites,
but I plan to look at this next.
rdar://20356658
Swift SVN r27877
use a thin function type.
We still need thin-function-to-RawPointer conversions
for generic code, but that's fixable with some sort of
partial_apply_thin_recoverable instruction.
Swift SVN r24364
storage for arbitrary values.
A buffer doesn't provide any way to identify the type of
value it stores, and so it cannot be copied, moved, or
destroyed independently; thus it's not available as a
first-class type in Swift, which is why I've labelled
it Unsafe. But it does allow an efficient means of
opaquely preserving information between two cooperating
functions. This will be useful for the adjustments I
need to make to materializeForSet to support safe
addressors.
I considered making this a SIL type category instead,
like $@value_buffer T. This is an attractive idea because
it's generally better-typed. The disadvantages are that:
- it would need its own address_to_pointer equivalents and
- alloc_stack doesn't know what type will be stored in
any particular buffer, so there still needs to be
something opaque.
This representation is a bit gross, but it'll do.
Swift SVN r23903
Using the intrinsics is obnoxious because I needed them
to return Builtin.NativeObject?, but there's no reasonable
way to safely generate optional types from Builtins.cpp.
Ugh.
Dave and I also decided that there's no need for
swift_tryPin to allow a null object.
Swift SVN r23824
If an imported C struct has no __nonnull pointer fields, then we can give a default initializer that zeroes all of its fields. This becomes a requirement when working with partially-imported types like NSDecimal. NSDecimal has bitfields Swift can't see yet, so it's impossible to DI, but the Foundation functions that work with NSDecimal all emit their result by out parameter, and without access to its fields it is impossible to initialize an NSDecimal for use with one of these functions. Implement the initializer using a builtin that gets lowered by IRGen; this is also made necessary by the fact that Swift has only a partial view of the struct, so we can't form a complete zero initializer until we have the definitive type layout from Clang.
Swift SVN r23727
CmpXChg builtins now return (T, Bool) to match the LLVM return value.
Turn the tests back on and check extractvalue / inttoptr instructions.
<rdar://problem/17309776> Update modeling of cmpxchg builtin to handle weak-ness and separate success bit
Swift SVN r23104
This is a type that has ownership of a reference while allowing access to the
spare bits inside the pointer, but which can also safely hold an ObjC tagged pointer
reference (with no spare bits of course). It additionally blesses one
Foundation-coordinated bit with the meaning of "has swift refcounting" in order
to get a faster short-circuit to native refcounting. It supports the following
builtin operations:
- Builtin.castToBridgeObject<T>(ref: T, bits: Builtin.Word) ->
Builtin.BridgeObject
Creates a BridgeObject that contains the bitwise-OR of the bit patterns of
"ref" and "bits". It is the user's responsibility to ensure "bits" doesn't
interfere with the reference identity of the resulting value. In other words,
it is undefined behavior unless:
castReferenceFromBridgeObject(castToBridgeObject(ref, bits)) === ref
This means "bits" must be zero if "ref" is a tagged pointer. If "ref" is a real
object pointer, "bits" must not have any non-spare bits set (unless they're
already set in the pointer value). The native discriminator bit may only be set
if the object is Swift-refcounted.
- Builtin.castReferenceFromBridgeObject<T>(bo: Builtin.BridgeObject) -> T
Extracts the reference from a BridgeObject.
- Builtin.castBitPatternFromBridgeObject(bo: Builtin.BridgeObject) -> Builtin.Word
Presents the bit pattern of a BridgeObject as a Word.
BridgeObject's bits are set up as follows on the various platforms:
i386, armv7:
No ObjC tagged pointers
Swift native refcounting flag bit: 0x0000_0001
Other available spare bits: 0x0000_0002
x86_64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0001
Swift native refcounting flag bit: 0x0000_0000_0000_0002
Other available spare bits: 0x7F00_0000_0000_0004
arm64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0000
Swift native refcounting flag bit: 0x4000_0000_0000_0000
Other available spare bits: 0x3F00_0000_0000_0007
TODO: BridgeObject doesn't present any extra inhabitants. It ought to at least provide null as an extra inhabitant for Optional.
Swift SVN r22880
Replace the true/maybe state that Builtin.canBeClass was returning by a
tri-state (yes, no, maybe) allowing the optimizer to use the definite no
answer. This removes the need of the sizeof check that we had in
isClassOrObjCExistential. It also removes the need to CSE this function since
in most cases we will be able to instantiate canBeClass to yes or no (vs maybe)
at compile time.
benchmark``````````````,``baserun0``,``optrun2``,``delta,``speedup
ClassArrayGetter```````,``988.00````,``337.00```,``644.00``,````````191.7%
DeltaBlue``````````````,``2429.00```,``1927.00``,``460.00``,````````23.9%
Dictionary`````````````,``1374.00```,``1231.00``,``129.00``,````````10.9%
Havlak`````````````````,``1079.00```,``911.00```,``124.00``,````````13.7%
Rectangles`````````````,``924.00````,``541.00```,``379.00``,````````70.1%
radar://16823238
Swift SVN r21331
This always wrapped a single GenericTypeParamDecl *, and provided no benefit
over just using the decl directly.
No (intended) functionality change.
Swift SVN r19628
No validation is done yet on whether the user-specified access control makes
sense in context, but all ValueDecls should at least /have/ accessibility now.
/Still/ no tests yet. They will be much easier to write once we're actually
enforcing access control and/or printing access control.
Swift SVN r19143
SILGen lowers this to unchecked_trivial_bit_cast or unchecked_ref_bit_cast based on the semantics of the input and output types, raising an unsupported error if one of the types are address-only.
Swift SVN r19058
These changes prevent a certain class of bogus errors, as well as several crashers. Unfortunately, though, they don't quite get us to the point where we can broadly use recursively defined protocol requirements, in the standard library. (To do so would require significant changes across the entire stack.)
Swift SVN r19019
This builtin only becomes unreachable when assert_configuration calls have been folded, allowing library-level checks to become unreachable based on the assert level.
Swift SVN r17322
Add Builtin.destroyArray, .copyArray, .takeArrayFrontToBack, and .takeArrayBackToFront, which perform bulk destroy/copy/take operations using memcpy/memmove, a loop, or a generic value witness.
Swift SVN r17009
This will allow stdlib code to explicitly mark branches it knows to be unreachable. Make this work with SIL diagnostics by lowering the builtin to a normal builtin_function_ref/apply in SILGen, and special-case handling the builtin in DCE by removing the apply along with the following dead instructions when we recognize an unreachable block.
Swift SVN r16745