Rather than automatically re-exporting or not re-exporting every import in
a TranslationUnit, we'll eventually want to control which imports are local
(most of them) and which imports are shared with eventual module loaders.
It's probably not worth implementing this for TranslationUnit, but
LoadedModule can certainly do something here.
Currently, a LoadedModule is even more permissive than a TranslationUnit:
all imports are re-exported. We can lock down on this once we have a
re-export syntax.
Swift SVN r6523
This change also exposes and fixes a bug where we would improperly filter
shadowed declarations. removeShadowedDecls() assumed that all decls had the
same name, but when it is used from lookupVisibleDecls(), this is not true.
Thus, we group decls not only by signature, but also by name.
Swift SVN r6460
Removes the boolean IsTypeLookup and OnlyInstanceMembers, which were totally
misleading.
This fixes some bugs in lookupVisibleDecls, which allows us to remove
workarounds in code completion, that were not correct in some corner cases.
Now we also code complete references to instance functions in static contexts,
but code completion results in this case state the type of the resulting object
incorrectly.
Swift SVN r6396
This is a temporary hack until we properly make these carry
their own generic parameters.
This removes the last valid way to get UnboundGenericTypes in
a checked program.
Swift SVN r6373
for protocols when code completing outside the protocol's DeclContext on a
protocol's instance
'This' is obviously not allowed, but references to nested typealiases are
sometimes allowed on protocol instances, but only sometimes (filed
rdar://14489286). Just don't display such code completion results for now.
Swift SVN r6372
the containing DeclContext
Fixes a few FIXMEs in code completion where we were providing results that
refer to generic arguments outside of their scope.
Swift SVN r6370
is documented: look up members of a type that are visible from a specific
module. It does not matter much now, but when we have access control, it will.
Before this change, lookupVisibleDecls() tried to guess the *defining* module
of the type, and gave up if it could not. It forced us to duplicate some
lookup logic for some types (archetypes and protocol compositions). Also add a
test that lookup finds members of archetype's superclass, which the original
(duplicated) code did not handle.
Swift SVN r6363
need to unwrap the type sugar.
This was uncovered by the removal of IdentifierType and removal of
getCanonicalType() in code completion, which was working around
lookupVisibleDecls() not working for IdentifierTypes.
Swift SVN r6332
This lookup routine takes the place of MemberLookup for AST-level
lookups, which don't consider semantics at all and won't be able to
(for example) perform additional type checking to resolve the
lookup. No functionality change.
Swift SVN r5882
We decided to go with 'var' as a distributive pattern introducer which applies to bare identifiers within the subpattern. For example, 'var (a, b)' and '(var a, var b)' would be equivalent patterns. To model this, give 'var' its own AST node with a subpattern and remove the introducer loc from NamedPattern.
Swift SVN r5824
I talked to John about parsing patterns today, and because of the magnitude of name-lookup-dependent ambiguities between patterns and expressions, we agreed that at least for a first-pass implementation it makes sense to parse patterns as extensions of the expr grammar and charge name binding with distinguishing patterns from expressions. This gets us out of needing the concept of an "unresolved pattern", at least in the short term.
Swift SVN r5808
Introduce Pattern subclasses for the 'is T', 'T(<pattern>)', and '<expr>' pattern syntaxes we'll be introducing for pattern-matching "switch" statements. Also add an 'UnresolvedCalLPattern' to act as an intermediate for name lookup to resolve to a nominal type, oneof element, or function call expression pattern. Since we'll need to be able to rewrite patterns like we do expressions, add setters to AST nodes that contain references to subpatterns. Implement some basic walking logic in places we search patterns for var decls, but punt on any more complex type-checking or SILGen derived from these nodes until we actually use them.
Swift SVN r5780
Change AssignStmt into AssignExpr; this will make assignment behave more consistently with assignment-like operators, and is a first step toward integrating '=' parsing with SequenceExpr resolution so that '=' can obey precedence rules. This also nicely simplifies the AST representation of c-style ForStmts; the initializer and increment need only be Expr* instead of awkward Expr*/AssignStmt* unions.
This doesn't actually change any user-visible behavior yet; AssignExpr is still only parsed at statement scope, and typeCheckAssignment is still segregrated from the constraint checker at large. (In particular, a PipeClosureExpr containing a single assign expr in its body still doesn't use the assign expr to resolve its own type.) The parsing issue will be addressed by handling '=' during SequenceExpr resolution. typeCheckAssignment can hopefully be reworked to work within the constraint checker too.
Swift SVN r5500
This commit implements closure syntax that places the (optional)
parameter list in pipes within the curly braces of a closure. This
syntax "slides" well from very simple closures with anonymous
arguments, e.g.,
sort(array, {$1 > $0})
to naming the arguments
sort(array, {|x, y| x > y})
to adding a return type and/or parameter types
sort(array, {|x : String, y : String| -> Bool x > y})
and with multiple statements in the body:
sort(array, {|x, y|
print("Comparing \(x) and \(y)\n")
return x > y
})
When the body contains only a single expression, that expression
participates in type inference with its enclosing expression, which
allows one to type-check, e.g.,
map(strings, {|x| x.toUpper()})
without context. If one has multiple statements, however, one will
need to provide additional type information either with context
strings = map(strings, {
return $0.toUpper()
})
or via annotations
map(strings, {|x| -> String
return x.toUpper()
}
because we don't perform inter-statement type inference.
The new closure expressions are only available with the new type
checker, where they completely displace the existing { $0 + $1 }
anonymous closures. 'func' expressions remain unchanged.
The tiny test changes (in SIL output and the constraint-checker test)
are due to the PipeClosureExpr AST storing anonymous closure arguments
($0, $1, etc.) within a pattern in the AST. It's far cleaner to
implement this way.
The testing here is still fairly light. In particular, we need better
testing of parser recovery, name lookup for closures with local types,
more deduction scenarios, and multi-statement closures (which don't
get exercised beyond the unit tests).
Swift SVN r5169
Create a new FallthroughStmt, which transfers control from a 'case' or 'default' block to the next 'case' or 'default' block within a switch. Implement parsing and sema for FallthroughStmt, which syntactically consists of a single 'fallthrough' keyword. Sema verifies that 'fallthrough' actually appears inside a switch statement and that there is a following case or default block to pass control to.
SILGen/IRGen support forthcoming.
Swift SVN r4653
Unfortunately, this regresses the repl when expressions like (1,2) are entered. This is because the repl is violating some invariants (forming dags out of ASTs, making ASDAG's which upset the type checker). I'm going to fix this next, but can't bring myself to do it in the same commit.
Swift SVN r4617
Implement switch statements with simple value comparison to get the drudge work of parsing and generating switches in place. Cases are checked using a '=~' operator to compare the subject of the switch to the value in the case. Unlike a C switch, cases each have their own scope and don't fall through. 'break' and 'continue' apply to an outer loop rather to the switch itself. Multiple case values can be specified in a comma-separated list, as in 'case 1, 2, 3, 4:'. Currently no effort is made to check for duplicate cases or to rank cases by match strength; cases are just checked in source order, and the first one wins (aside from 'default', which is branched to if all cases fail).
Swift SVN r4359
Walk backward from a '.' through balanced () [] <> to find context. Fix a problem with parseCompletionContextExpr where UnresolvedIdentifierTypes wasn't getting properly transferred to the TranslationUnit after parsing, causing 'Foo<T>.' completion to blow up.
Swift SVN r4075
If the completion prefix has a '.' behind it, guesstimate a context expression by lexing backward through an identifier(.identifier)* dotted path, then attempt to parse and typecheck that expression to decide on a base type in which to find completions.
Swift SVN r4063
Implement a 'lookupVisibleDecls' API similar to Clang's that replicates the UnqualifiedLookup logic for walking through a given scope looking for decls. Use it to populate the completion list in the repl.
Still to be done: Clang module lookup via Clang's lookupVisibleDecls, and context deduction from dotted path expressions.
Swift SVN r4056