Recent changes added support for resiliently-sized enums, and
enums resilient to changes in implementation strategy.
This patch adds resilient case numbering, fixing the problem
where adding new payload cases would break existing code by
changing the numbering of no-payload cases.
The problem is that internally, enum cases are numbered with payload
cases coming first, followed by no-payload cases. While each list
is itself in declaration order, with new additions coming at the
end, we need to partition it to give us a fast runtime test for
"is this a payload or no-payload case index."
The resilient numbering strategy used here is that the getEnumTag
and destructiveInjectEnumTag value witness functions now take a
tag index in the range [-ElementsWithPayload..ElementsWithNoPayload-1].
Payload elements are numbered in *reverse* declaration order, so
adding new payload cases yields decreasing tag indices, and adding
new no-payload cases yields increasing tag indices, allowing use
sites to be resilient.
This adds the adjustment between 'fragile' and 'resilient' tag
indices in a somewhat unsatisfying manner, because the calculation
could be pushed down further into EnumImplStrategy, simplifying
both the IRGen code and the generated IR. I'll clean this up later.
In the meantime, clean up some other stuff in GenEnum.cpp, mostly
abstracting code that walks cases.
Correct format:
```
//===--- Name of file - Description ----------------------------*- Lang -*-===//
```
Notes:
* Comment line should be exactly 80 chars.
* Padding: Pad with dashes after "Description" to reach 80 chars.
* "Name of file", "Description" and "Lang" are all optional.
* In case of missing "Lang": drop the "-*-" markers.
* In case of missing space: drop one, two or three dashes before "Name of file".
If an enum is fixed-layout in our resilience domain but not
universally fixed-layout, other resilience domains will use
runtime functions to project and inject payloads.
These expect to find the payload size in the metadata, so
emit it if the enum is not universally fixed-layout.
Note that we do know the payload size, so it is constant
for us; there's no runtime call required to initialize
the metadata.
This value witness function takes an address of an enum value where the
payload has already been initialized, together with a case index, and
forms the enum value.
The formal behavior can be thought of as satisfying an identity in
relation to the existing two enum value witnesses. For any enum
value, the following is to leave the value unchanged:
tag = getEnumTag(value)
destructiveProjectEnumData(value)
destructiveInjectEnumData(value, tag)
This is the last missing piece for the inject_enum_addr SIL instruction
to handle resilient enums, allowing the implementation of an enum to be
decoupled from its uses. Also, it should be useful for dynamically
constructing enum cases with write reflection, once we get around to
doing such a thing.
The body of the value witness is emitted by a new emitStoreTag() method
on EnumImplStrategy. This is similar to the existing storeTag(), except
the case index is a value instead of a contant.
This is implemented as follows for the different enum strategies:
1) For enums consisting of a single case, this is trivial.
2) For enums where all cases are empty, stores the case index into the
payload area.
3) For enums with a single payload case, emits a call to a runtime
function. Note that for non-generic single payload enums, this could
be open-coded more efficiently, but the function still has the
correct behavior since it supports extra inhabitants and so on.
A follow-up patch will make this more efficient.
4) For multi-payload enums, there are two cases:
a) If one of the payloads is generic or resilient, the enum is
dynamically-sized, and a call to a runtime function is emitted.
b) If the entire enum is fixed-size, the value witness checks if
the case is empty or not.
If the case has a payload, the case index is swizzled into
spare bits of the payload, if any, with remaining bits going
into the extra tag area.
If the case is empty, the case index is swizzled into the
spare bits of the payload, the remaining bits of the payload,
and the extra tag area.
The implementations of emitStoreTag() duplicate existing logic in the
enum strategies, in particular case 4)b) is rather complicated.
Code cleanups are welcome here!
For example, if a @_fixed_layout struct A contains a resilient struct B
from the same module M, then inside M, A can have a fixed size, but
outside, A has a dynamic size because B is opaque. In this case, A is
not "universally fixed-size". This impacts multi-payload enums, because
if A is placed inside a multi-payload enum E which is lowered inside X,
we would get a fixed layout with spare bits, but lowering E outside of
X would yield a dynamic layout. This is incorrect.
Fix this by plumbing through a new predicate IsAlwaysFixedSize, which
is similar to IsPOD and IsBitwiseTakable, where a compound type inherits
the property if all leaf types exhibit it, and only use spare bits if
the original and substituted types have this property.
We were calling hasTypeParameter() on the interface type of the enum
element. Since enum elements are case constructors now, the interface
type was a GenericFunctionType, and since conceptually these cannot
contain free type variables, this would always return to false.
The right fix here is to pass down the unsubstituted type info and
look at the spare bits of that when doing multi-payload enum layout.
Now that this works, we can remove a FIXME that was added to patch
around this.
Fixes two issues with the original patch:
- If numCaseBits was >= 32, the high bits of the tag were shifted
by an incorrect amount. In this case, the high bits were always
zero anyway, but the invalid shift triggered an assertion in
ARM64 codegen. Fixed to not generate the offending instructions
at all, since just loading the payload value is enough.
- When the payload is very small, the number of no-payload cases
could be greater than 2**payloadBits, requiring multiple payload
tags to represent them all. There was an arithmetic error in
this case.
This re-applies r31328.
Swift SVN r31365
The payload tag discriminates between payload cases, but empty cases
are stored in the common spare bits of the payload types, so the logic
here would report all empty cases as having the first empty case selected.
And when writing tests, I didn't cover enums with multiple empty *and*
non-empty cases. Oops...
Now we emit a little bit more code to assemble the correct case index
from both the payload tag and payload value, then select between the
two values depending on the payload tag.
Fixes <rdar://problem/22192074>.
Swift SVN r31328
These will be used for reflection, and eventually to speed up generic
operations on single payload enums as well.
Progress on <rdar://problem/21739870>.
Swift SVN r30214
Using LLVM large integers to represent enum payloads has been causing compiler performance and code size problems with large types, and has also exposed a long tail of backend bugs. Replace them with an "EnumPayload" abstraction that manages breaking a large opaque binary value into chunks, along with masking, testing, and extracting typed data from the binary blob. For now, use a word-sized chunking schema always, though the architecture here is set up to eventually allow the use of an arbitrary explosion schema, which would benefit single-payload enums by allowing the payload to follow the explosion schema of the contained value.
This time, adjust the assertion in emitCompare not to perform a check before we've established that the payload is empty, since APInt doesn't have a 0-bit state and the default-constructed form is nondeterminisitic. (We should probably use a more-tailored representation for enum payload bit patterns than APInt or ClusteredBitVector.)
Swift SVN r28985
Using LLVM large integers to represent enum payloads has been causing compiler performance and code size problems with large types, and has also exposed a long tail of backend bugs. Replace them with an "EnumPayload" abstraction that manages breaking a large opaque binary value into chunks, along with masking, testing, and extracting typed data from the binary blob. For now, use a word-sized chunking schema always, though the architecture here is set up to eventually allow the use of an arbitrary explosion schema, which would benefit single-payload enums by allowing the payload to follow the explosion schema of the contained value.
Swift SVN r28982
Preparation to fix <rdar://problem/18151694> Add Builtin.checkUnique
to avoid lost Array copies.
This adds the following new builtins:
isUnique : <T> (inout T[?]) -> Int1
isUniqueOrPinned : <T> (inout T[?]) -> Int1
These builtins take an inout object reference and return a
boolean. Passing the reference inout forces the optimizer to preserve
a retain distinct from what’s required to maintain lifetime for any of
the reference's source-level copies, because the called function is
allowed to replace the reference, thereby releasing the referent.
Before this change, the API entry points for uniqueness checking
already took an inout reference. However, after full inlining, it was
possible for two source-level variables that reference the same object
to appear to be the same variable from the optimizer's perspective
because an address to the variable was longer taken at the point of
checking uniqueness. Consequently the optimizer could remove
"redundant" copies which were actually needed to implement
copy-on-write semantics. With a builtin, the variable whose reference
is being checked for uniqueness appears mutable at the level of an
individual SIL instruction.
The kind of reference count checking that Builtin.isUnique performs
depends on the argument type:
- Native object types are directly checked by reading the
strong reference count:
(Builtin.NativeObject, known native class reference)
- Objective-C object types require an additional check that the
dynamic object type uses native swift reference counting:
(Builtin.UnknownObject, unknown class reference, class existential)
- Bridged object types allow the dymanic object type check to be
bypassed based on the pointer encoding:
(Builtin.BridgeObject)
Any of the above types may also be wrapped in an optional. If the
static argument type is optional, then a null check is also performed.
Thus, isUnique only returns true for non-null, native swift object
references with a strong reference count of one.
isUniqueOrPinned has the same semantics as isUnique except that it
also returns true if the object is marked pinned regardless of the
reference count. This allows for simultaneous non-structural
modification of multiple subobjects.
In some cases, the standard library can dynamically determine that it
has a native reference even though the static type is a bridge or
unknown object. Unsafe variants of the builtin are available to allow
the additional pointer bit mask and dynamic class lookup to be
bypassed in these cases:
isUnique_native : <T> (inout T[?]) -> Int1
isUniqueOrPinned_native : <T> (inout T[?]) -> Int1
These builtins perform an implicit cast to NativeObject before
checking uniqueness. There’s no way at SIL level to cast the address
of a reference, so we need to encapsulate this operation as part of
the builtin.
Swift SVN r27887
Store the number of payload and no-payload cases, the case names, and a lazy case type accessor function for enums, like we do for stored properties of structs and classes. This will be useful for multi-payload runtime support, and should also be enough info to hack together a reflection implementation for enums.
For dynamic multi-payload enums to not be ridiculously inefficient, we'll need to track the size of the payload area in the enum, like we do the field offsets of generic structs and classes, so hack off a byte in the payload case count to track the offset of that field in metadata records. 16 million payloads ought to be enough for anyone, right? (and 256 words between the enum metadata's address point and the payload size offset)
Swift SVN r27789
specific case and returning an i1 result. This can be done a lot more efficiently (in
terms of generated LLVM IR) than doing a general switch over the cases. This will be used
to implement rdar://19404937, but there is a miscompilation here that I'm tracking down.
Until it is working, I'm not committing the code to use these entrypoints, which wires it
into IRGen of SelectEnumInst and SelectEnumAddrInst. Since that part isn't included, this
is NFC.
Swift SVN r24362
IRGen uses a typedef, SpareBitVector, for its principal
purpose of tracking spare bits. Other uses should not
use this typedef, and I've tried to follow that, but I
did this rewrite mostly with sed and may have missed
some fixups.
This should be almost completely NFC. There may be
some subtle changes in spare bits for witness tables
and other off-beat pointer types. I also fixed a bug
where IRGen thought that thin functions were two
pointers wide, but this wouldn't have affected anything
because we never store thin functions anyway, since
they're not a valid AST type.
This commit repplies r24305 with two fixes:
- It fixes the computation of spare bits for unusual
integer types to use the already-agreed-upon type
size instead of recomputing it. This fixes the
i386 stdlib build. Joe and I agreed that we should
also change the size to use the LLVM alloc size
instead of the next power of 2, but this patch
does not do that yet.
- It changes the spare bits in function types back
to the empty set. I'll be changing this in a
follow-up, but it needs to be tied to runtime
changes. This fixes the regression test failures.
Swift SVN r24324
IRGen uses a typedef, SpareBitVector, for its principal
purpose of tracking spare bits. Other uses should not
use this typedef, and I've tried to follow that, but I
did this rewrite mostly with sed and may have missed
some fixups.
This should be almost completely NFC. There may be
some subtle changes in spare bits for witness tables
and other off-beat pointer types. I also fixed a bug
where IRGen thought that thin functions were two
pointers wide, but this wouldn't have affected anything
because we never store thin functions anyway, since
they're not a valid AST type.
Swift SVN r24305
- A spot fix in SILGen for reabstracting the result of a downcast, which fixes checked casts to function types.
- Associate the layout information in type metadata records with the most abstract representation of the type. This is the correct thing to do in cases where we need the metadata as a tag for an opaque value--if we store a value in an Any, or pass it as an unconstrained generic parameter, we must maximally reabstract it. This fixes the value semantics of existentials containing trivial metatypes.
- To ensure that we get runtime layout of structs and enums correct when they contain reabstractable types, introduce a "metadata for layout" concept, which doesn't need to describe the canonical metadata for the type, but only needs to describe a type with equivalent layout and value semantics. This is a correctness fix that allows us to correctly lay out generic types containing dependent tuples and functions, and although we don't really take advantage of it here, it's also a potential runtime performance win down the road, because we could potentially produce direct metadata for a primitive type that's layout-equivalent with a runtime-instantiated type. To aid in type safety here, push SILType deeper into IRGen in places where we potentially care about specific representations of types.
- Finally, fix an inconsistency between the runtime and IRGen's concept of what spare bits unmanaged references and thick metatypes have.
Together, these fixes address rdar://problem/16406907, rdar://problem/17822208, rdar://problem/18189508, and likely many other related issues, and also fixes crash suite cases 012 and 024.
Swift SVN r21963
I introduced a function swift_keepAlive2() which has a different signature from
swift_keepAlive() until I can verify that the stdlib is using the new
infrastructure.
The difference in signature is that swift_keepAlive2 takes just a pointer while
swift_keepAlive also takes a metadata value that is not necessary for our
purposes anymore.
Swift SVN r21718
If a type has to be passed or returned resiliently, it
will necessarily be passed indirectly, which is already
represented in SILFunctionType. There is no need to
represent this as a separate channel of information.
NFC. Also fixes a problem where the signature cache
for ExtraData::Block was writing past the end of an
array (but into the storage for an adjacent array
which was fortunately never used).
ExtraData should also disappear as a concept, but we're
still relying on that for existential protocol witnesses.
Swift SVN r21548
LLDB needs this in order to accurately test enums that use extra inhabitants of aggregates, for which we don't guarantee that we set all of the bits to an exact value. Allows lldb to address <rdar://problem/17787682>. Now with no test crashes.
Swift SVN r20545
LLDB needs this in order to accurately test enums that use extra inhabitants of aggregates, for which we don't guarantee that we set all of the bits to an exact value. Allows lldb to address <rdar://problem/17787682>.
Swift SVN r20527
In value witness table generation, and probably other places, we're inappropriately assuming that 'initializeWithTake' is equivalent to a memcpy in all cases, which isn't true for types that carry weak references or for potentially other types in the future. Add an 'isBitwiseTakable' property to TypeInfos that can be checked to see whether a type is bitwise-takable.
Swift SVN r16799
pointer first.
This most important effect of this is that accesses to that
field don't need to be dynamically offsetted past an arbitrary
number of value witnesses, which is pretty nice for the
generic value witnesses.
Swift SVN r16243
This is easier to emit optimal code for on our target platforms, and is more likely to find a contiguous range of spare bits to place the tag in.
Swift SVN r12435
Export EnumImplStrategy from the GenEnum.h header, and add some accessors that LLDB or other interested parties can use to work out how an enum is laid out:
- getElementsWithPayload() and getElementsWithNoPayload(), to pick out the cases that were laid out as nonempty and empty (including those that are considered no-payload due to empty type optimization);
- getBitPatternForNoPayloadElement() to return the unique bit pattern representing a no-payload case; and
- getTagBitsForPayloads() to return the bitmask of the discriminator tag for payload cases.
Swift SVN r12269