"minimal" is defined as the set of requirements that would be
passed to a function with the type's generic signature that
takes the thick metadata of the parent type as its only argument.
And use the new project_existential_box to get to the address value.
SILGen now generates a project_existential_box for each alloc_existential_box.
And IRGen re-uses the address value from the alloc_existential_box if the operand of project_existential_box is an alloc_existential_box.
This lets the generated code be the same as before.
Use them to generate value witnesses when the type has dynamic packing.
Regularize the interface for calling value witnesses.
Not a huge difference yet, although we do re-use local type data
a little more effectively now.
Since that's somewhat expensive, allow the generation of meaningful
IR value names to be efficiently controlled in IRGen. By default,
enable meaningful value names only when generating .ll output.
I considered giving protocol witness tables the name T:Protocol
instead of T.Protocol, but decided that I didn't want to update that
many test cases.
The main idea here is that we really, really want to be
able to recover the protocol requirement of a conformance
reference even if it's abstract due to the conforming type
being abstract (e.g. an archetype). I've made the conversion
from ProtocolConformance* explicit to discourage casual
contamination of the Ref with a null value.
As part of this change, always make conformance arrays in
Substitutions fully parallel to the requirements, as opposed
to occasionally being empty when the conformances are abstract.
As another part of this, I've tried to proactively fix
prospective bugs with partially-concrete conformances, which I
believe can happen with concretely-bound archetypes.
In addition to just giving us stronger invariants, this is
progress towards the removal of the archetype from Substitution.
Instead of categorically forbidding caching within a conditional
scope, permit it but remember how to remove the cache entries.
This means that ad-hoc emission code can now get exactly the
right caching behavior if they use this properly. In keeping
with that, adjust a bunch of code to properly nest scopes
according to the conditional paths they enter.
There are several interesting new features here.
The first is that, when emitting a SILFunction, we're now able to
cache type data according to the full dominance structure of the
original function. For example, if we ask for type metadata, and
we've already computed it in a dominating position, we're now able
to re-use that value; previously, we were limited to only doing this
if the value was from the entry block or the LLVM basic block
matched exactly. Since this tracks the SIL dominance relationship,
things in IRGen which add their own control flow must be careful
to suppress caching within blocks that may not dominate the
fallthrough; this mechanism is currently very crude, but could be
made to allow a limited amount of caching within the
conditionally-executed blocks.
This query is done using a proper dominator tree analysis, even at -O0.
I do not expect that we will frequently need to actually build the
tree, and I expect that the code-size benefits of doing a real
analysis will be significant, especially as we move towards making
more metadata lazily computed.
The second feature is that this adds support for "abstract"
cache entries, which indicate that we know how to derive the metadata
but haven't actually done so. This code isn't yet tested, but
it's going to be the basis of making a lot of things much lazier.
of associated types in protocol witness tables.
We use the global access functions when the result isn't
dependent, and a simple accessor when the result can be cheaply
recovered from the conforming metadata. Otherwise, we add a
cache slot to a private section of the witness table, forcing
an instantiation per conformance. Like generic type metadata,
concrete instantiations of generic conformances are memoized.
There's a fair amount of code in this patch that can't be
dynamically tested at the moment because of the widespread
reliance on recursive expansion of archetypes / dependent
types. That's something we're now theoretically in a position
to change, and as we do so, we'll test more of this code.
This speculatively re-applies 7576a91009,
i.e. reverts commit 11ab3d537f.
We have not been able to duplicate the build failure in
independent testing; it might have been spurious or unrelated.
of associated types in protocol witness tables.
We use the global access functions when the result isn't
dependent, and a simple accessor when the result can be cheaply
recovered from the conforming metadata. Otherwise, we add a
cache slot to a private section of the witness table, forcing
an instantiation per conformance. Like generic type metadata,
concrete instantiations of generic conformances are memoized.
There's a fair amount of code in this patch that can't be
dynamically tested at the moment because of the widespread
reliance on recursive expansion of archetypes / dependent
types. That's something we're now theoretically in a position
to change, and as we do so, we'll test more of this code.
This reverts commit 6528ec2887, i.e.
it reapplies b1e3120a28, with a fix
to unbreak release builds.
This reverts commit b1e3120a28.
Reverting because this patch uses WitnessTableBuilder::PI in NDEBUG code.
That field only exists when NDEBUG is not defined, but now NextCacheIndex, a
field that exists regardless, is being updated based on information from PI.
This problem means that Release builds do not work.
of associated types in protocol witness tables.
We use the global access functions when the result isn't
dependent, and a simple accessor when the result can be cheaply
recovered from the conforming metadata. Otherwise, we add a
cache slot to a private section of the witness table, forcing
an instantiation per conformance. Like generic type metadata,
concrete instantiations of generic conformances are memoized.
There's a fair amount of code in this patch that can't be
dynamically tested at the moment because of the widespread
reliance on recursive expansion of archetypes / dependent
types. That's something we're now theoretically in a position
to change, and as we do so, we'll test more of this code.
A single extra inhabitant is good enough for the most important case,
that being a single level of optionality. Otherwise, we want to
reserve maximal flexibility for the implementation.
This commit also fixes a bug where I was not correctly defining
the extra-inhabitant rules for all of the existential cases.
This is a bit of a hodge-podge of related changes that I decided
weren't quite worth teasing apart:
First, rename the weak{Retain,Release} entrypoints to
unowned{Retain,Release} to better reflect their actual use
from generated code.
Second, standardize the names of the rest of the entrypoints around
unowned{operation}.
Third, standardize IRGen's internal naming scheme and API for
reference-counting so that (1) there are generic functions for
emitting operations using a given reference-counting style and
(2) all operations explicitly call out the kind and style of
reference counting.
Finally, implement a number of new entrypoints for unknown unowned
reference-counting. These entrypoints use a completely different
and incompatible scheme for working with ObjC references. The
primary difference is that the new scheme abandons the flawed idea
(which I take responsibility for) that we can simulate an unowned
reference count for ObjC references, and instead moves towards an
address-only scheme when the reference might store an ObjC reference.
(The current implementation is still trivially takable, but that is
not something we should be relying on.) These will be tested in a
follow-up commit. For now, we still rely on the bad assumption of
reference-countability.
For example, if a @_fixed_layout struct A contains a resilient struct B
from the same module M, then inside M, A can have a fixed size, but
outside, A has a dynamic size because B is opaque. In this case, A is
not "universally fixed-size". This impacts multi-payload enums, because
if A is placed inside a multi-payload enum E which is lowered inside X,
we would get a fixed layout with spare bits, but lowering E outside of
X would yield a dynamic layout. This is incorrect.
Fix this by plumbing through a new predicate IsAlwaysFixedSize, which
is similar to IsPOD and IsBitwiseTakable, where a compound type inherits
the property if all leaf types exhibit it, and only use spare bits if
the original and substituted types have this property.
Replace isSingle{Unknown,Swift}ReferenceCountedObject() with a single
entry point that also returns the reference counting style. Use this
in GenEnum to emit more specific entry points than native and unknown.
This will give a slight performance boost on Darwin, and enable use of
the blocks runtime on Linux.
Progress on <rdar://problem/23315750>.
The swift_unknown* entry points are not available on the Linux port.
Previously we would still attempt to use them in a couple of cases:
1) Foreign classes
2) Existentials and archetypes
3) Optionals of boxed existentials
Note that this patch changes IRGen to never emit the
swift_errorRelease/Retain entry points on Linux. We would like to
use them in the future if we ever adopt a tagged-pointer representation
for small errors. In this case, they can be brought back, and the
TypeInfo for optionals will need to be generalized to propagate the
reference counting of the payload type, instead of defaulting to
unknown if the payload type is not natively reference counted.
A similar change will need to be made to support blocks, if we ever
want to use the blocks runtime on Linux.
Fixes <rdar://problem/23335318>, <rdar://problem/23335537>,
<rdar://problem/23335453>.
This will let us eventually do tagged pointer optimization for small error values. We don't take advantage of this in IRGen yet, but we can take advantage of it in the dynamic cast code in a few places, so it gets exercised, and doing this now will let us backward-deploy the optimization when we do implement it in the future.
- GenProto.cpp for protocols and protocol conformances
- GenExistential.cpp for existential type layout and operations
- GenArchetype.cpp for archetype type layout and operations
Swift SVN r32493