An invalid `case` construct would incorrectly return a successful status, causing `parseDecl` to crash later when it assumed there were valid decls in the `Entries` vector.
mode (take 2)
Allow untyped placeholder to take arbitrary type, but default to Void.
Add _undefined<T>() function, which is like fatalError() but has
arbitrary return type. In playground mode, merely warn about outstanding
placeholders instead of erroring out, and transform placeholders into
calls to _undefined(). This way, code with outstanding placeholders will
only crash when it attempts to evaluate such placeholders.
When generating constraints for an iterated sequence of type T, emit
T convertible to $T1
$T1 conforms to SequenceType
instead of
T convertible to SequenceType
This ensures that an untyped placeholder in for-each sequence position
doesn't get inferred to have type SequenceType. (The conversion is still
necessary because the sequence may have IUO type.) The new constraint
system precipitates changes in CSSimplify and CSDiag, and ends up fixing
18741539 along the way.
(NOTE: There is a small regression in diagnosis of issues like the
following:
class C {}
class D: C {}
func f(a: [C]!) { for _: D in a {} }
It complains that [C]! doesn't conform to SequenceType when it should be
complaining that C is not convertible to D.)
<rdar://problem/21167372>
(Originally Swift SVN r31481)
There's a buggy SIL verifier check that was previously tautological,
and it turns out that it's violated, apparently harmlessly. Since it
was already doing nothing, I've commented it out temporarily while
I figure out the right way to fix SILGen to get the invariant right.
This centralizes the entrypoints for creating SILFunctions. Creating a
SILFunction is intimately tied to a specific SILModule, so it makes sense to
either centralize the creation on SILModule or SILFunction. Since a SILFunction
is in a SILModule, it seems more natural to put it on SILModule.
I purposely created a new override on SILMod that exactly matches the signature
of SILFunction::create so that beyond the extra indirection through SILMod, this
change should be NFC. We can refactor individual cases in later iterations of
refactoring.
Revert "Make function parameters and refutable patterns always
immutable"
This reverts commit 8f2fbdc93a.
Once we have finally merged master into the Swift 2.2 branch to be, we
should revert this commit to turn the errors back on for Swift 3.0.
The drivers for this change are providing a simpler API to SIL pass
authors, having a more efficient of the in-memory representation,
and ruling out an entire class of common bugs that usually result
in hard-to-debug backend crashes.
Summary
-------
SILInstruction
Old New
+---------------+ +------------------+ +-----------------+
|SILInstruction | |SILInstruction | |SILDebugLocation |
+---------------+ +------------------+ +-----------------+
| ... | | ... | | ... |
|SILLocation | |SILDebugLocation *| -> |SILLocation |
|SILDebugScope *| +------------------+ |SILDebugScope * |
+---------------+ +-----------------+
We’re introducing a new class SILDebugLocation which represents the
combination of a SILLocation and a SILDebugScope.
Instead of storing an inline SILLocation and a SILDebugScope pointer,
SILInstruction now only has one SILDebugLocation pointer. The APIs of
SILBuilder and SILDebugLocation guarantees that every SILInstruction
has a nonempty SILDebugScope.
Developer-visible changes include:
SILBuilder
----------
In the old design SILBuilder populated the InsertedInstrs list to
allow setting the debug scopes of all built instructions in bulk
at the very end (as the responsibility of the user). In the new design,
SILBuilder now carries a "current debug scope" state and immediately
sets the debug scope when an instruction is inserted.
This fixes a use-after-free issue with with SIL passes that delete
instructions before destroying the SILBuilder that created them.
Because of this, SILBuilderWithScopes no longer needs to be a template,
which simplifies its call sites.
SILInstruction
--------------
It is neither possible or necessary to manually call setDebugScope()
on a SILInstruction any more. The function still exists as a private
method, but is only used when splicing instructions from one function
to another.
Efficiency
----------
In addition to dropping 20 bytes from each SILInstruction,
SILDebugLocations are now allocated in the SILModule's bump pointer
allocator and are uniqued by SILBuilder. Unfortunately repeat compiles
of the standard library already vary by about 5% so I couldn’t yet
produce reliable numbers for how much this saves overall.
rdar://problem/22017421
This reflects the fact that the attribute's only for compiler-internal use, and isn't really equivalent to C's asm attribute, since it doesn't change the calling convention to be C-compatible.
All refutable patterns and function parameters marked with 'var'
is now an error.
- Using explicit 'let' keyword on function parameters causes a warning.
- Don't suggest making function parameters mutable
- Remove uses in the standard library
- Update tests
rdar://problem/23378003
If the returned expression has the same indentation as the "return"
keyword, warn. This warning already existed but wasn't happening
for single-expression closures. Move emission of the warning from Sema
to Parse.
<rdar://problem/16798323>
Make the following illegal:
switch thing {
case .A(var x):
modify(x0
}
And provide a replacement 'var' -> 'let' fix-it.
rdar://problem/23172698
Swift SVN r32883
Make the following patterns illegal:
if var x = ... {
...
}
guard var x = ... else {
...
}
while var x = ... {
...
}
And provide a replacement fixit 'var' -> 'let'.
rdar://problem/23172698
Swift SVN r32855
This mostly works the same as for functions. It required a slight tweak
to how we handle 'var <complete>' to avoid consuming the code completion
token prematurely.
rdar://problem/21012767
Swift SVN r32844
Don't allow a pattern like:
for var x in sequence {
...
}
and provide a removal fix-it for the 'var' keyword.
Additionally, for the following code:
for let x in sequence {
...
}
Provide a removal fix-it since the 'let' specifier is now
redundant.
rdar://problem/23172698
Swift SVN r32818
Before this commit, for a var decl at top level, code completion engine assumes the code
completion token contained in this decl is the end point of the delayed parsing, i.e. the
second pass of code completion. This may lead to incomplete ASTs during the second pass, for
instance, when the code completion token lies at the second argument of a call expr that takes
three arguments. We fix the issue by allowing the first pass to pre-register the end location of
a top-level var decl since the first pass is a more error-tolerant and holistic parsing, and the second
pass to reuse this loc.
Swift SVN r32729
This is a WIP to make CompilerVersion more general.
- Rename CompilerVersion to just "Version"
- Make version comparison general and put _compiler_version special logic
with its second version component in a specialized parsing function
- Add a generic version parsing function
Swift SVN r32726