Part of the FileUnit restructuring. A serialized module is now represented as
a TranslationUnit containing a single SerializedASTFile.
As part of this change, the FileUnit interface has been made virtual, rather
than switching on the Kind in every accessor. We think the operations
performed on files are sufficiently high-level that this shouldn't affect us.
A nice side effect of all this is that we now properly model the visibility
of modules imported into source files. Previously, we would always consider
the top-level imports of all files within a target, whether re-exported or
not.
We may still end up wanting to distinguish properties of a complete Swift
module file from a partial AST file, but we can do that within
SerializedModuleLoader.
Swift SVN r10832
The goal of this series of commits is to allow the main module to consist
of both source files and AST files, where the AST files represent files
that were already built and don't need to be rebuilt, or of Swift source
files and imported Clang headers that share a module (because they are in
the same target).
Currently modules are divided into different kinds, and that defines how
decls are looked up, how imports are managed, etc. In order to achieve the
goal above, that polymorphism should be pushed down to the individual units
within a module, so that instead of TranslationUnit, BuiltinModule,
SerializedModule, and ClangModule, we have SourceFile, BuiltinUnit,
SerializedFile, and ClangUnit. (Better names welcome.) At that point we can
hopefully collapse TranslationUnit into Module and make Module non-polymorphic.
This commit makes SourceFile the subclass of an abstract FileUnit, and
makes TranslationUnit hold an array of FileUnits instead of SourceFiles.
To demonstrate that this is actually working, the Builtin module has also
been converted to FileUnit: it is now a TranslationUnit containing a single
BuiltinUnit.
Swift SVN r10830
a FuncDecl. This makes it much more straight-forward for SIL passes to
introduce a new one - without doing name lookup in the builtin module!
Swift SVN r10694
Like GlobalAddrInst, but for SILGlobalVariables. These would become the same instruction when SILGlobalVariable can replace AST-level global references.
Swift SVN r10510
This will let us control linkage and emit new variables independent of the AST in SILGen. In particular, for lazy global initialization, we need to emit a unique internal once predicate for every top-level pattern binding. Switching everything over is a bit much to reengineer all at once, so for now, it can coexist with the globals map that is already there.
Swift SVN r10509
(the same way alloc_box returns two) instead of returning a tuple.
This eliminates a ton of tuple_extract instructions, which just
bloat the generated SIL. This resolves rdar://15378135.
Swift SVN r10416
Introduces a new flag in SILLocation: InPrologue to mark instructions
that setup the stack and allocate storage for local variables/arguments.
Fixes rdar://problem/15290023: Breakpoint set on prologue - crash ensues.
Swift SVN r9686
Anywhere that assumes a single input file per TU now has to do so explicitly.
Parsing still puts all files in a single SourceFile instance; that's next on
the list.
There are a lot of issues still to go, but the design is now in place.
Swift SVN r9669
Most alloc_stacks emitted by SILGen are temporaries and don't need to be preserved for debug info. It's only the ones that relate to local variables that we need to preserve. Fixes <rdar://problem/15272642>.
Swift SVN r9543
This will allow us to differentiate from regular inlined code (as in optimization inlining). Some passes(AllocBocToStack) and debug info would be allowed to be more aggressive/preserve less debug info with mandatory inlined code.
Swift SVN r9339
Right now this is just an extra layer of indirection for the decls,
operators, and imports in a TU, but it's the first step towards compiling
multiple source files at once without pretending they're all in a single
file. This is important for the "implicit visibility" feature, where
declarations from other source files in the same module are accessible
from the file currently being compiled.
Swift SVN r9072
Pull the implicit 'Self' associated type out of the protocol and into
an implicitly-declared generic parameter list for the protocol. This
makes all of the methods of a protocol polymorphic, e.g., given
protocol P {
typealias Assoc
func getAssoc() -> Assoc
}
the type of P.getAssoc is:
<Self : P> (self : @inout P) -> () -> Self.Assoc
This directly expresses the notion that protocol methods are
polymorphic, even though 'Self' is always implicitly bound. It can be
used to simplify IRgen and some parts of the type checker, as well as
laying more of the groundwork for default definitions within
protocols as well as sundry other improvements to the generics
system.
There are a number of moving parts that needed to be updated in tandem
for this. In no particular order:
- Protocols always get an implicit generic parameter list, with a
single generic parameter 'Self' that conforms to the protocol itself.
- The 'Self' archetype type now knows which protocol it is
associated with (since we can no longer point it at the Self
associated type declaration).
- Protocol methods now get interface types (i.e., canonicalizable
dependent function types).
- The "all archetypes" list for a polymorphic function type does not
include the Self archetype nor its nested types, because they are
handled implicitly. This avoids the need to rework IRGen's handling
of archetypes for now.
- When (de-)serializing a XREF for a function type that has an
interface type, use the canonicalized interface type, which can be
meaningfully compared during deserialization (unlike the
PolymorphicFunctionType we'd otherwise be dealing with).
- Added a SIL-specific type attribute @sil_self, which extracts the
'Self' archetype of a protocol, because we can no longer refer to
the associated type "P.Self".
Swift SVN r9066
These will provide a SIL-level representation of class_method dispatch, mapping from dynamically-dispatched SILDeclRefs to SILFunctions so that devirtualization passes will be able to promote a class_method for a statically-known type to a function_ref without going all the way back to the AST.
Swift SVN r8943
Make ApplyInst and PartialApplyInst directly take substitutions for generic functions instead of trying to stage out substitutions separately. The legacy reasons for doing this are gone.
Swift SVN r8747
Replace the existing suite of checked cast instructions with:
- unconditional_checked_cast, which performs an unconditional cast that aborts on failure (like the former downcast unconditional); and
- checked_cast_br, which performs a conditional pass and branches on whether the cast succeeds, passing the result to the true branch as an argument.
Both instructions take a CheckedCastKind that discriminates the different casting modes formerly discriminated by instruction type. This eliminates a source of null references in SIL and eliminates null SIL addresses completely.
Swift SVN r8696
This reverts r8624 and compensates by passing the TU to the SILModule printer when needed.
This addresses concerns that Jordan and Sean had raised.
Swift SVN r8678
Doug pointed out that 'isObjC' incorrectly excludes C functions, for which we'll also need to be able to independently reference Swift and foreign entries.
Swift SVN r8669
Only print function member declarations and skip the bodies since the bodies are already represented in SIL and ASTPrinter is not good enough to print arbitrary expressions.
In order to have valid output, make sure that ASTPrinter does not print references to DynamicLookup protocol.
Swift SVN r8627
Add a SILLinkage mode "Deserialized" to make sure IRGen will emit
hidden symbols for deserialized SILFunction.
Inside SIL linker, set Linkage to external if we only have a declaration for
a callee function.
Both sil block and decl block in a module can emit an array of substitutions.
To share the serialization between SILSerializer and Serializer, we modify
the interface to pass in the abbreviation codes to write functions and to
pass in a cursor to read functions.
We now correctly handle the serialization of Substitutions in SpecializeInst.
For a deserialized SILFunction, we now temporarily set its SILLocation and
DebugScope to an empty FileLocation. Once mandatory inliner sets the SILLocation
to the location of ApplyInst, a null SILLocation and a null DebugScope
may work for a deserialized SILFunction.
Update testing cases to reflect that we are now inlining transparent functions
from modules, or to disable SILDeserializer for now (I am not sure how to update
those testing cases).
Swift SVN r8582
This mirrors the behavior of project_existential and simplifies some special cases in SILGen. It unfortunately makes dynamic_lookup sequences a bit noisier because of the need to explicitly cast the projection from DynamicLookup.Self to Builtin.ObjCPointer, but I think this modeling is more solid and will fit better with my planned redesign of archetype_method/protocol_method.
Swift SVN r8572
entire aggregates at once.
This has three worth effects:
- It significantly decreases the amount of SIL required
for these operations.
- It makes it far easier for IR-gen to choose efficient
patterns of destruction, e.g. calling a single entrypoint
or recognizing that it can just use the runtime 'release'
entrypoints.
- It makes it easier to recognize and optimize aggregate
copy/destroy operations.
It does make SROA-like tasks a bit more challenging. The
intent is to give TypeLowering a way to expand these into
their primitive behavior.
Swift SVN r8465
Handle the following SILInstructions:
LoadWeakInst,
Checked Conversion instructions:
DowncastInst, SuperToArchetypeRefInst,
DowncastArchetypeAddrInst, DowncastArchetypeRefInst,
ProjectDowncastExistentialAddrInst, DowncastExistentialRefInst
Add an optional 2-bit field for instruction attributes to SILOneOperandLayout
and SILOneTypeOneOperandLayout.
Update SILPrinter to print [take] for LoadWeakInst.
Swift SVN r8416
Add serialization/deserialization of the following SILInstructions:
BuiltinFunctionRefInst, IndexRawPointerInst, ModuleInst,
Conversion instructions:
RefToObjectPointerInst, UpcastInst, CoerceInst, AddressToPointerInst,
PointerToAddressInst, ObjectPointerToRefInst, RefToRawPointerInst,
RawPointerToRefInst, RefToUnownedInst, UnownedToRefInst
DestroyAddrInst, LoadInst, StrongReleaseInst, StrongRetainInst,
TupleElementAddrInst, TupleExtractInst
Make getModule in ModuleFile public to be used by SILDeserializer, also
make addModuleRef in Serializer public to be used by SILSerializer.
Update testing case to cover the above SILInstructions.
Swift SVN r8372
and remove DeclContext base class from FuncDecl, ConstructorDecl and
DestructorDecl
This decreases the number of DeclContexts to 7 and allows us to apply
alignas(8) to DeclContext.
Swift SVN r8186