In a bunch of use-cases we use stripSinglePredecessorArgs to eliminate this
case. There is no reason to assume that this is being done in the caller of
RCIdentity. Lets make sure that we handle this case here.
rdar://24156136
- isTypeParameter() -- check if this is an archetype or dependent
interface type.
- requiresClass() -- check if this is a class-constrained type
parameter.
The old isOpaque() check has been replaced by
(isTypeParameter() && !requiresClass(moduleDecl)).
This allows us to pass the ModuleDecl on down to
GenericSignature::requiresClass(), enabling the use of
interface types in abstraction patterns.
NFC for now.
This improves the quality of code but more importantly makes it easier to ensure
that new terminators are handled in this code since all of the switches are now
covered switches.
As part of this, use a different enum for parsed generic requirements.
NFC except that I noticed that ASTWalker wasn't visiting the second
type in a conformance constraint; fixing this seems to have no effect
beyond producing better IDE annotations.
The main idea here is that we really, really want to be
able to recover the protocol requirement of a conformance
reference even if it's abstract due to the conforming type
being abstract (e.g. an archetype). I've made the conversion
from ProtocolConformance* explicit to discourage casual
contamination of the Ref with a null value.
As part of this change, always make conformance arrays in
Substitutions fully parallel to the requirements, as opposed
to occasionally being empty when the conformances are abstract.
As another part of this, I've tried to proactively fix
prospective bugs with partially-concrete conformances, which I
believe can happen with concretely-bound archetypes.
In addition to just giving us stronger invariants, this is
progress towards the removal of the archetype from Substitution.
If a global variable in a module we are compiling has a type containing
a resilient value type from a different module, we don't know the size
at compile time, so we cannot allocate storage for the global statically.
Instead, we will use a buffer, just like alloc_stack does for archetypes
and resilient value types.
This adds a new SIL instruction but does not yet make use of it.
The big differences here are that:
1. We no longer use the 4096 trick.
2. Now we store all indices inline so no mallocing is required and the
value is trivially copyable. We allow for much larger indices to be
stored inline which makes having an unrepresentable index a much smaller
issue. For instance on a 32 bit platform, in NewProjection, we are able
to represent an index of up to (1 << 26) - 1, which should be more than
enough to handle any interesting case.
3. We can now have up to 7 ptr cases and many more index cases (with each extra
bit needed to represent the index cases lowering the representable range of
indices).
The whole data structure is much simpler and easier to understand as a
bonus. A high level description of the ADT is as follows:
1. A PointerIntEnum for which bits [0, (num_tagged_bits(T*)-1)] are not all
set to 1 represent an enum with a pointer case. This means that one can have
at most ((1 << num_tagged_bits(T*)) - 2) enum cases associated with
pointers.
2. A PointerIntEnum for which bits [0, (num_tagged_bits(T*)-1)] are all set
is either an invalid PointerIntEnum or an index.
3. A PointerIntEnum with all bits set is an invalid PointerIntEnum.
4. A PointerIntEnum for which bits [0, (num_tagged_bits(T*)-1)] are all set
but for which the upper bits are not all set is an index enum. The case bits
for the index PointerIntEnum are stored in bits [num_tagged_bits(T*),
num_tagged_bits(T*) + num_index_case_bits]. Then the actual index is stored
in the remaining top bits. For the case in which this is used in swift
currently, we use 3 index bits meaning that on a 32 bit system we have 26
bits for representing indices meaning we can represent indices up to
67_108_862. Any index larger than that will result in an invalid
PointerIntEnum. On 64 bit we have many more bits than that.
By using this representation, we can make PointerIntEnum a true value type
that is trivially constructable and destructable without needing to malloc
memory.
In order for all of this to work, the user of this needs to construct an
enum with the appropriate case structure that allows the data structure to
determine what cases are pointer and which are indices. For instance the one
used by Projection in swift is:
enum class NewProjectionKind : unsigned {
// PointerProjectionKinds
Upcast = 0,
RefCast = 1,
BitwiseCast = 2,
FirstPointerKind = Upcast,
LastPointerKind = BitwiseCast,
// This needs to be set to ((1 << num_tagged_bits(T*)) - 1). It
// represents the first NonPointerKind.
FirstIndexKind = 7,
// Index Projection Kinds
Struct = PointerIntEnumIndexKindValue<0, EnumTy>::value,
Tuple = PointerIntEnumIndexKindValue<1, EnumTy>::value,
Index = PointerIntEnumIndexKindValue<2, EnumTy>::value,
Class = PointerIntEnumIndexKindValue<3, EnumTy>::value,
Enum = PointerIntEnumIndexKindValue<4, EnumTy>::value,
LastIndexKind = Enum,
};
Having a separate address and container value returned from alloc_stack is not really needed in SIL.
Even if they differ we have both addresses available during IRGen, because a dealloc_stack is always dominated by the corresponding alloc_stack in the same function.
Although this commit quite large, most changes are trivial. The largest non-trivial change is in IRGenSIL.
This commit is a NFC regarding the generated code. Even the generated SIL is the same (except removed #0, #1 and @local_storage).
This is something that we have wanted for a long time and will enable us to
remove some hacks from the compiler (i.e. how we determine in the ARC optimizer
that we have "fatalError" like function) and also express new things like
"noarc".
Parameters (to methods, initializers, accessors, subscripts, etc) have always been represented
as Pattern's (of a particular sort), stemming from an early design direction that was abandoned.
Being built on top of patterns leads to patterns being overly complicated (e.g. tuple patterns
have to have varargs and default parameters) and make working on parameter lists complicated
and error prone. This might have been ok in 2015, but there is no way we can live like this in
2016.
Instead of using Patterns, carve out a new ParameterList and Parameter type to represent all the
parameter specific stuff. This simplifies many things and allows a lot of simplifications.
Unfortunately, I wasn't able to do this very incrementally, so this is a huge patch. The good
news is that it erases a ton of code, and the technical debt that went with it. Ignoring test
suite changes, we have:
77 files changed, 2359 insertions(+), 3221 deletions(-)
This patch also makes a bunch of wierd things dead, but I'll sweep those out in follow-on
patches.
Fixes <rdar://problem/22846558> No code completions in Foo( when Foo has error type
Fixes <rdar://problem/24026538> Slight regression in generated header, which I filed to go with 3a23d75.
Fixes an overloading bug involving default arguments and curried functions (see the diff to
Constraints/diagnostics.swift, which we now correctly accept).
Fixes cases where problems with parameters would get emitted multiple times, e.g. in the
test/Parse/subscripting.swift testcase.
The source range for ParamDecl now includes its type, which permutes some of the IDE / SourceModel tests
(for the better, I think).
Eliminates the bogus "type annotation missing in pattern" error message when a type isn't
specified for a parameter (see test/decl/func/functions.swift).
This now consistently parenthesizes argument lists in function types, which leads to many diffs in the
SILGen tests among others.
This does break the "sibling indentation" test in SourceKit/CodeFormat/indent-sibling.swift, and
I haven't been able to figure it out. Given that this is experimental functionality anyway,
I'm just XFAILing the test for now. i'll look at it separately from this mongo diff.
When enabled, generate closure functions with guaranteed conventions as their context parameters, and pass context arguments to them as guaranteed when possible. (When forming a closure by partial_apply, the partial apply still needs to take ownership of the parameters, regardless of their convention.)
This is necessary for some other work I'm doing, which really wants
paramdecls to have reasonable declcontexts. It is also a small step
towards generic subscripts.
enumerate them lazily.
This leads to compilation time improvement, as some of the LSValues previously
enumerated do not be created in this approach.
i.e. we enumerate LSValues created by loads previously, but the LoadInsts could be
target for RLE. In such case, the enumerated LSValues are not used.
Compilation time improvement: 1775ms to 1721ms (2.7% to 2.6% of the entire
compilation time for stdlib -O).
Existing tests ensure correctness.
Note: we still enumerate locations, as we need to know how many locations there are
in the function to resize the bitvector appropriately before the data flow runs.
Instead of bodging a representation of the SIL capture parameters for a closure into the formal type of closure SILDeclRefs, introduce those parameters in a separate lowering step. This lets us clean up some TypeLowering code that was tolerating things like SILBoxTypes and naked LValueTypes in formal types for nefarious ends (though requires some hacks in SILGen to keep the representation of curry levels consistent, which is something I hope to clean up next). This also decouples the handling of captures from the handling of other parameters, which should enable us to make them +0. For now, there should be NFC.
NewProjection is a re-architecting of Projection that supports all of
the same functionality as Projection but in 1/3 of the original size (in
the common case). It is able to accomplish this by removing the base
type out of NewProjection itself and into users such as
NewProjectionPath. Thus NewProjection is now strictly an index from some
parent type rather than being a parent type and an index.
NewProjectionPath also has all of the same functionality as
ProjectionPath, but due to NewProjection being smaller than Projection
is smaller than ProjectionPath.
Used together NewProjection/NewProjectionPath yields the same output as
Projection/ProjectionPath when evaluating the LSLocation dumping tests.
Additionally, NewProjection is more flexible than Projection and will
for free give us the ability to perform AA on index_addr/index_raw_addr
as well as be able to integrate casts into the projection paradigm.
rdar://22484381
This commit is related to the work of encoding mangled names more efficiently by
compressing them. This commit adds two new methods to the mangler that allows it
to identify requests to mangle strings that are already mangled. Right now the
mangler does not do anything with this information.
This API is needed in all of the places in the compiler where we compose mangled
names. For example, when the optimizer is cloning functions it adds a prefix to
an existing name.
I verified that this change is correct by adding a compress/decompress methods
that add a prefix to the mangled names with assertions to catch compression of
already compressed symbols or decompression of non-compressed named. I plan to
commit the verification code together with the compression implementation later
on.
This commit changes the Swift mangler from a utility that writes tokens into a
stream into a name-builder that has two phases: "building a name", and "ready".
This clear separation is needed for the implementation of the compression layer.
Users of the mangler can continue to build the name using the mangleXXX methods,
but to access the results the users of the mangler need to call the finalize()
method. This method can write the result into a stream, like before, or return
an std::string.
This commit fixes all of the places where users of the Mangler write to the stream that's used by the Mangler. The plan is to make the Mangler buffered, and this means that users can't assume that the mangler immediately writes the mangled tokens to the output stream.