Introduce Fix-Its to aid migration from selectors spelled as string
literals ("foo:bar:", which is deprecated), as well as from
construction of Selector instances from string literals
(Selector("foo:bar"), which is still acceptable but not recommended),
to the #selector syntax. Jump through some hoops to disambiguate
method references if there are overloads:
fixits.swift:51:7: warning: use of string literal for Objective-C
selectors is deprecated; use '#selector' instead
_ = "overloadedWithInt:" as Selector
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#selector(Bar.overloaded(_:) as (Bar) -> (Int) -> ())
In the cases where we cannot provide a Fix-It to a #selector
expression, we wrap the string literal in a Selector(...) construction
to suppress the deprecation warning. These are also easily searchable
in the code base.
This also means we're doing more validation of the string literals
that go into Selector, i.e., that they are well-formed selectors and
that we know about some method that is @objc and has that
selector. We'll warn if either is untrue.
As part of SE-0022, introduce an 'objc_selector' encoding for string
literals that places the UTF-8 string literal into the appropriate
segment for uniquing of Objective-C selector names.
As there are no instructions left which produce multiple result values, this is a NFC regarding the generated SIL and generated code.
Although this commit is large, most changes are straightforward adoptions to the changes in the ValueBase and SILValue classes.
And use the new project_existential_box to get to the address value.
SILGen now generates a project_existential_box for each alloc_existential_box.
And IRGen re-uses the address value from the alloc_existential_box if the operand of project_existential_box is an alloc_existential_box.
This lets the generated code be the same as before.
computing its type. NFC, but it means that dumping the type in the
deubgger while in computeType() works better.
Make sure to set "isrecursive" in ArchetypeBuilder.cpp on an
associated type when the container is found to be recursive even if
we don't emit the diagnostic. Spotted by inspection, NFC AFAIK.
Enhance the ASTDumper to print the recursive bit on associated types.
Since resilience is a property of the module being compiled,
not decls being accessed, we need to record which types are
resilient as part of the module.
Previously we would only ever look at the @_fixed_layout
attribute on a type. If the flag was not specified, Sema
would slap this attribute on every type that gets validated.
This is wasteful for non-resilient builds, because there
all types get the attribute. It was also apparently wrong,
and I don't fully understand when Sema decides to validate
which decls.
It is much cleaner conceptually to just serialize this flag
with the module, and check for its presence if the
attribute was not found on a type.
My recent changes added "resiliently-sized" global variables, where a
global in one module is defined to be of a type from another module,
and the type's size is not known at compile time.
This patch adds the other half of the equation: when accessing a
global variable defined by another module, we want to use accessors
since we want to resiliently change global variables from stored to
computed and vice versa.
The main complication here is that the synthesized accessors are not
part of any IterableDeclContext, and require some special-casing in
SILGen and Serialization. There might be simplifications possible here.
For testing and because of how the resilience code works right now,
I added the @_fixed_layout attribute to global variables. In the
future, we probably will not give users a way to promise that a
stored global variable will always remain stored; or perhaps we will
hang this off of a different attribute, once we finalize the precise
set of attributes exposed for resilience.
There's probably some other stuff with lazy and observers I need to
think about here; leaving that for later.
Introduce a new attribute, swift3_migration, that lets us describe the
transformation required to map a Swift 2.x API into its Swift 3
equivalent. The only transformation understood now is "renamed" (to
some other declaration name), but there's a message field where we can
record information about other changes. The attribute can grow
somewhat (e.g., to represent parameter reordering) as we need it.
Right now, we do nothing but store and validate this attribute.
As part of this, use a different enum for parsed generic requirements.
NFC except that I noticed that ASTWalker wasn't visiting the second
type in a conformance constraint; fixing this seems to have no effect
beyond producing better IDE annotations.
This eliminates some minor overheads, but mostly it eliminates
a lot of conceptual complexity due to the overhead basically
appearing outside of its context.
The main idea here is that we really, really want to be
able to recover the protocol requirement of a conformance
reference even if it's abstract due to the conforming type
being abstract (e.g. an archetype). I've made the conversion
from ProtocolConformance* explicit to discourage casual
contamination of the Ref with a null value.
As part of this change, always make conformance arrays in
Substitutions fully parallel to the requirements, as opposed
to occasionally being empty when the conformances are abstract.
As another part of this, I've tried to proactively fix
prospective bugs with partially-concrete conformances, which I
believe can happen with concretely-bound archetypes.
In addition to just giving us stronger invariants, this is
progress towards the removal of the archetype from Substitution.
If a global variable in a module we are compiling has a type containing
a resilient value type from a different module, we don't know the size
at compile time, so we cannot allocate storage for the global statically.
Instead, we will use a buffer, just like alloc_stack does for archetypes
and resilient value types.
This adds a new SIL instruction but does not yet make use of it.
A protocol conformance needs to know what declarations satisfy requirements;
these are called "witnesses". For a value (non-type) witness, this takes the
form of a ConcreteDeclRef, i.e. a ValueDecl plus any generic specialization.
(Think Array<Int> rather than Array<T>, but for a function.)
This information is necessary to compile the conformance, but it causes
problems when the conformance is used from other modules. In particular,
the type used in a specialization might itself be a generic type in the
form of an ArchetypeType. ArchetypeTypes can't be meaningfully used
outside their original context, however, so this is a weird thing to
have to deal with. (I'm not going to go into when a generic parameter is
represented by an ArchetypeType vs. a GenericTypeParamType, partially
because I don't think I can explain it well myself.)
The above issue becomes a problem when we go to use the conformance from
another module. If module C uses a conformance from module B that has a
generic witness from module A, it'll think that the archetypes in the
specialization for the witness belong in module B. Which is just wrong.
It turns out, however, that no code is using the full specializations for
witnesses except for when the conformance is being compiled and emitted.
So this commit sidesteps the problem by just not serializing the
specializations that go with the ConcreteDeclRef for a value witness.
This doesn't fix the underlying issue, so we should probably still see
if we can either get archetypes from other contexts out of value witness
ConcreteDeclRefs, or come up with reasonable rules for when they're okay
to use.
rdar://problem/23892955
Under -enable-infer-default-arguments, the Clang importer infers some
default arguments for imported declarations. Rather than jumping
through awful hoops to make sure that we create default argument
generators (which will likely imply eager type checking), simply
handle these cases as callee-side expansions.
This makes -enable-infer-default-arguments usable, fixing
rdar://problem/24049927.
to check the implicit bit for decls, because otherwise we'd consider
params declared with a name of `self` as being "the self parameter".
This is trivial, except for the fact that we don't serialize the
implicit bit on parameters. I can't bring myself to burn encoding
space for this (particularly since we shouldn't be encoding self
decls in the first place!), so make the deserializer infer this bit
instead.
This is something that we have wanted for a long time and will enable us to
remove some hacks from the compiler (i.e. how we determine in the ARC optimizer
that we have "fatalError" like function) and also express new things like
"noarc".
Parameters (to methods, initializers, accessors, subscripts, etc) have always been represented
as Pattern's (of a particular sort), stemming from an early design direction that was abandoned.
Being built on top of patterns leads to patterns being overly complicated (e.g. tuple patterns
have to have varargs and default parameters) and make working on parameter lists complicated
and error prone. This might have been ok in 2015, but there is no way we can live like this in
2016.
Instead of using Patterns, carve out a new ParameterList and Parameter type to represent all the
parameter specific stuff. This simplifies many things and allows a lot of simplifications.
Unfortunately, I wasn't able to do this very incrementally, so this is a huge patch. The good
news is that it erases a ton of code, and the technical debt that went with it. Ignoring test
suite changes, we have:
77 files changed, 2359 insertions(+), 3221 deletions(-)
This patch also makes a bunch of wierd things dead, but I'll sweep those out in follow-on
patches.
Fixes <rdar://problem/22846558> No code completions in Foo( when Foo has error type
Fixes <rdar://problem/24026538> Slight regression in generated header, which I filed to go with 3a23d75.
Fixes an overloading bug involving default arguments and curried functions (see the diff to
Constraints/diagnostics.swift, which we now correctly accept).
Fixes cases where problems with parameters would get emitted multiple times, e.g. in the
test/Parse/subscripting.swift testcase.
The source range for ParamDecl now includes its type, which permutes some of the IDE / SourceModel tests
(for the better, I think).
Eliminates the bogus "type annotation missing in pattern" error message when a type isn't
specified for a parameter (see test/decl/func/functions.swift).
This now consistently parenthesizes argument lists in function types, which leads to many diffs in the
SILGen tests among others.
This does break the "sibling indentation" test in SourceKit/CodeFormat/indent-sibling.swift, and
I haven't been able to figure it out. Given that this is experimental functionality anyway,
I'm just XFAILing the test for now. i'll look at it separately from this mongo diff.
This is necessary for some other work I'm doing, which really wants
paramdecls to have reasonable declcontexts. It is also a small step
towards generic subscripts.
This commit changes the Swift mangler from a utility that writes tokens into a
stream into a name-builder that has two phases: "building a name", and "ready".
This clear separation is needed for the implementation of the compression layer.
Users of the mangler can continue to build the name using the mangleXXX methods,
but to access the results the users of the mangler need to call the finalize()
method. This method can write the result into a stream, like before, or return
an std::string.
Rather than plumbing a "has missing required members" flag all the way
through the LazyResolver's loadAllMembers and its implementations,
just eagerly update the "has missing required members" flag in the
Clang importer when it happens. More NFC cleanup.
to make sure we are not accessing the buffer before the output is ready. The Mangler is going to be buffered (for compression), and accessing the underlying buffer is a bug.