When comparing two functions for overload resolution, break apart the
parameter lists to compare individual parameters rather than comparing
the tuples. This allows us to prefer functions with fewer arguments to
ones with more, defaulted or variadic arguments. That preference was
already encoded in the constraint optimizer, which led to some strange
behavior where the preference was expressed for function calls but not
for calls to initializers. Fixes rdar://problem/24128153.
The standard library change tweaks the anachronistic, unavailable
"print" variants somewhat. The only behavior change here is a slight
regression for cases like:
print(a: 1, b: 2)
where we used to produce a diagnostic:
Please wrap your tuple argument in parentheses: 'print((...))'
but we now get:
argument labels '(a:, b:)' do not match any available overloads
However, this regression will happen at some point *anyway*, if
SE-0029 (or anything else that removes the implicit tuple splat
operation) goes through.
* Switch to calling `putchar_unlocked()` instead of `putchar()` for
actual printing. We're already locking stdout with `flockfile()`, so
there's no need for the redundant lock that `putchar()` uses.
* Add an explicit lock to the output stream in `dump()`. This means the
entire dump is printed with the lock held, which will prevent the
output of `dump()` from mixing with prints on other threads.
* Use `_debugPrint_unlocked()` instead of `debugPrint()` in
`_adHocPrint()`. The output stream is already locked while this
function is executing. Rename the function to `_adHocPrint_unlocked()`
to make this explicit.
* Use `targetStream.write()` and `_print_unlocked()` instead of
`print()` in `_dumpObject()`. This removes the redundant locking, and
also eliminates the creation of intermediate strings. Rename the
function to `_dumpObject_unlocked()` to make this explicit.
* Use `targetStream.write()`, `_print_unlocked()`, and
`_debugPrint_unlocked()` in `_dumpSuperclass()`. This removes the
redundant locking, and also eliminates the creation of intermediate
strings. Rename the function to `_dumpSuperclass_unlocked()` to make
this explicit.
* Use `_debugPrint_unlocked()` instead of `debugPrint()` in
`String.init(reflecting:)`. This shouldn't really make much of a
difference but it matches the usage of `_print_unlocked()` in
`String.init(_:)`.
The net result is that all printing is still covered under locks like
before, but stdout is never recursively locked. This should result in
slightly faster printing. In addition, `dump()` is now covered under a
single lock so it can't mix its output with prints from other threads.
These APIs are from the Swift 1.2 => Swift 2.0 transition, and are not
relevant anymore.
Removing them reduces the surface area of the library that needs to be
reviewed.
This allows us to remove the workaround generic overloads for "print" without sacrificing good diagnostics for its unavailable overloads. (rdar://problem/21499048, rdar://problem/21582758, rdar://problem/22126141)
Swift SVN r31169
The print abi changed so that there is no longer a way to print one item to a
stream without going through a vararg array. We call the print function in a
String initializer (e.g for string interpolation) incurring unnecessary
overhead. Use an internal specialized version of print instead.
rdar://22133281
Swift SVN r31000
There's still work left to do. In terms of next steps, there's still rdar://problem/22126141, which covers removing the 'workaround' overloads for print (that prevent bogus overload resolution failures), as well as providing a decent diagnostic when users invoke print with 'appendNewline'.
Swift SVN r30976
It reads more naturally to keep all the text arguments together.
One day maybe this will be a method on OutputStream, but probably not as
long as String conforms to it :-)
Swift SVN r30864