Teach swift_deallocPartialClassInstance how to deal with classes that
have pure Objective-C classes in their hierarchy. In such cases, we
need to make sure a few things happen:
1) We deallocate via objc_release rather than
swift_deallocClassInstance.
2) We only attempt to find an execute ivar destroyers for
Swift-defined classes in the hierarchy
3) When we hit the most-derived pure Objective-C class, make sure that we
only execute the dealloc of that class and not any of the subclasses
(which would end up trying to destroy ivars again).
Fixes rdar://problem/25023544.
This reverts commit 2262bd579a.
This information isn't necessary for field descriptor lookup,
after all. It's only the fields that need to have generic information,
which is already in the field descriptor.
Previously, the mangling didn't include generics, but these are
needed to key off of the new field descriptor metadata, as well
as to construct type references for the nominal type.
- Add RuntimeTarget template This will allow for converting between
metadata structures for native host and remote target architectures.
- Create InProcess and External templates for stored pointers
Add a few more types to abstract pointer access in the runtime
structures but keep native in-process pointer access the same as that
with a plain old pointer type.
There is now a notion of a "stored pointer", which is just the raw value
of the pointer, and the actual pointer type, which is used for loads.
Decoupling these allows us to fork the behavior when looking at metadata
in an external process, but keep things the same for the in-process
case.
There are two basic "runtime targets" that you can use to work with
metadata:
InProcess: Defines the pointer to be trivially a T* and stored as a
uintptr_t. A Metadata * is exactly as it was before, but defined via
AbstractMetadata<InProcess>.
External: A template that requires a target to specify its pointer size.
ExternalPointer: An opaque pointer in another address space that can't
(and shouldn't) be indirected with operator* or operator->. The memory
reader will fetch the data explicitly.
"minimal" is defined as the set of requirements that would be
passed to a function with the type's generic signature that
takes the thick metadata of the parent type as its only argument.
This makes sure that runtime functions use proper calling conventions, get the required visibility, etc.
We annotate the most popular runtime functions in terms of how often they are invoked from Swift code.
- Almost all variants of retain/release functions are annotated to use the new calling convention.
- Some popular non-reference counting functions like swift_getGenericMetadata or swift_dynamicCast are annotated as well.
The set of runtime functions annotated to use the new calling convention should exactly match the definitions in RuntimeFunctions.def!
Generate global symbols which are function pointers to the actual implementations of runtime entry points.
This is done only for entry points using the new calling convention or for those entry points which explicitly require it.
and MetadataCache and fix a re-entrancy bug in metadata
instantiation.
The re-entrancy bug is that we were holding the instantiation
lock of a metadata cache while instantiating metadata. Doing
so prevents us from creating a different instantiation if
it's needed by the outer instantiation. This is already
possible, but it's much more likely in a patch I'm working on
to only store the minimal metadata for generic parameters
in generic types.
The same bug could also show up as a deadlock between threads,
so a recursive lock would not be a good fix. Instead, we add
a condition variable to the metadata cache. When fetching
metadata, we look for a node in the concurrent map, eagerly
creating an empty one if none currently exists. If lookup
finds an empty node, we wait on the condition variable for
the node to become populated. If lookup succeeds in creating
an empty node, we instantiate the metadata, grab the lock,
populate the node, and notify the condition variable.
Safely creating an empty node without any metadata present
requires us to move the key data into the map entry. That,
plus a few other invariant shifts, makes it sensible to
give the user of ConcurrentMap more control over the
allocation of map nodes and the layout of keys. That, in
turn, allows us to change the contract so that keys can be
more complex than just a hash code. Instead of incrementing
hash codes and re-performing the lookup, we just insist
that lookup keys be totally ordered.
For now, I've kept the uniform use of hash codes as a
component of the key for MetadataCaches. However, hash
codes aren't really profitable for small keys, and we should
probably use direct comparisons instead.
We should also switch the safer metadata caches (i.e. the
ones that don't involve calling an arbitrary instantiation
function, like MetatypeMetadataCache) over to directly use
ConcurrentMap.
LLDB's requirement that we maintain a linked list of metadata
cache instantiations with a known layout means we can't yet
remove the CacheEntry's redundant copy of the generic
arguments.
Add_library doesn't build per-target variants of the library, but
add_swift_library does. Also changed to install as part of stdlib, since it's
needed even if you aren't building the compiler.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
Deallocation of partially-initialized instances of @objc classes
isn't supported yet, but let's avoid a regression compared to
Swift 2.1 behavior by fixing the one case that used to work,
where the early return occurs after all stored properties have
been initialized.
Fixes SR-704.