The issue here is that the constraint solver was deciding on
FixKind::RelabelCallTuple as the fix for the problem and emitting the
diagnostic, even though there were two different fixes possible.
CSDiags has the infrastructure to support doing doing the right thing
here, but is only being used for ApplyExprs, not SubscriptExprs.
The solution is to fix both problems: remove FixKind::RelabelCallTuple,
to let CSDiags handle the problem, and enhance CSDiags to treat
SubscriptExpr more commonly with ApplyExpr. This improves several cases
where the solver was picking one solution randomly and suggesting that
as a fix, instead of listing that there are multiple different solutions.
Most of this is in updating the standard library, SDK overlays, and
piles of test cases to use the new names. No surprises here, although
this shows us some potential heuristic tweaks.
There is one substantive compiler change that needs to be factored out
involving synthesizing calls to copyWithZone()/copy(zone:). Aside from
that, there are four failing tests:
Swift :: ClangModules/objc_parse.swift
Swift :: Interpreter/SDK/Foundation_test.swift
Swift :: Interpreter/SDK/archiving_generic_swift_class.swift
Swift :: Interpreter/SDK/objc_currying.swift
due to two independent remaining compiler bugs:
* We're not getting partial ordering between NSCoder's
encode(AnyObject, forKey: String) and NSKeyedArchiver's version of
that method, and
* Dynamic lookup (into AnyObject) doesn't know how to find the new
names. We need the Swift name lookup tables enabled to address this.
- Enhance the branch new argument label overload diagnostic to just
print the argument labels that are the problem, instead of printing
the types inferred at the argument context. This can lead to confusion
particularly when an argument label is missing. For example before:
error: argument labels '(Int)' do not match any available overloads
note: overloads for 'TestOverloadSets.init' exist with these partially matching parameter lists: (a: Z0), (value: Int), (value: Double)
after:
error: argument labels '(_:)' do not match any available overloads
note: overloads for 'TestOverloadSets.init' exist with these partially matching parameter lists: (a: Z0), (value: Int), (value: Double)
Second, fix <rdar://problem/22451001> QoI: incorrect diagnostic when argument to print has the wrong type
by specifically diagnosing the problem when you pass in an argument to a nullary function. Before:
error: cannot convert value of type 'Int' to expected argument type '()'
after:
error: argument passed to call that takes no arguments
print(r22451001(5))
^
Swift SVN r31795
and use it in the diagnostics path (only!) to revisit active constraints that
are left in the system after a failure is found. This improves a number of
otherwise sad diagnostics in the testsuite and resolves rdar://22083115.
The one QoI regression (in throwing_functions.swift) is now tracked by 22158167.
Swift SVN r31027
Update the importer and name lookup to prefer a factory initializer that is more available
over a convenience initializer that is less available even though we generally prefer
convenience initializers over convenience factory initializers. The motivation for this
change is CIColor, which has added a new convenience initializer:
- (instancetype)initWithRed:(CGFloat)r green:(CGFloat)g blue:(CGFloat)b NS_AVAILABLE(10_11, 9_0);
but already has existing convenience factory initializer:
+ (instancetype)colorWithRed:(CGFloat)r green:(CGFloat)g blue:(CGFloat)b;
Without this change we prefer -initWithRed:green:blue, so instantiating CIColor with:
let colorChannelValue: CGFloat = …
let ciColor = CIColor(red: colorChannelValue, green: colorChannelValue, blue: colorChannelValue)
results in an availability error even though there is a perfectly available convenience
factory initializer. With this change, we choose the convenience factory initializer
when importing, so there is no availability error.
rdar://problem/20617581
Swift SVN r30946
detailed analysis of callees, which give us overload sets in more cases,
producing notes more consistently, and producing much better diagnostics
for the curried cases in test/Constraints/diagnostics.swift.
This also allows us to eliminate getCalleeName, which simplifies things
in CSDiags.
Swift SVN r30491
disjunction candidate set for a constraint that fails to match, not just
a single Bind within it. This eliminates the arbitrary nature of picking
one match, allowing us to diagnose the entire candidate set.
This exposed that we were trying to do argument matching of 'self' against
the partially curried arguments. Adjust the hack we have for that a bit to
make things work, but there are bigger problems for argument matching that
will need to be addressed.
Swift SVN r30064
facilities used by operators etc. This required a bunch of changes to make
the diagnostics changes strictly an improvement:
- Teach the new path about calls to TypeExprs.
- Teach evaluateCloseness some simple things about varargs.
- Make the generic diagnosis logic produce a better error when there is
exactly one match.
Overall, the resultant diagnostics are a step forward: we now produce candidate
set notes more uniformly, and the messages about some existing ones are
more specific. This is just another stepping stone towards progress though.
Swift SVN r30057
If 'x.init' appears as a member reference other than 'self.init' or 'super.init' within an initializer, treat it as a regular static member lookup for 'init' members. This allows a more explicit syntax for dynamic initializations; 'self.someMetatype()' looks too much like it's invoking a method. It also allows for partial applications of initializers using 'someMetatype.init' (though this needs some SILGen fixes, coming up next). While we're in the neighborhood, do some other correctness and QoI fixes:
- Only lookup initializers as members of metatypes, not instances, and add a fixit (instead of crashing) to insert '.dynamicType' if the initializer is found on an instance.
- Make it so that constructing a class-constrained archetype type correctly requires a 'required' or protocol initializer.
- Warn on unused initializer results. This seems to me like just the right thing to do, but is also a small guard against the fact that 'self.init' is now valid in a static method, but produces a newly-constructed value instead of delegating initialization (and evaluating to void).
Swift SVN r29344
This is required to correctly use the mock SDK when the SDK overlay is
built and tested separately. (Otherwise, the mock SDK might not get
used, because the overlay SDK options would expand from the
%-substitution, appear first on the command line, and shadow the mock
SDK in the search path).
Swift SVN r25185
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
These changes make the following improvements to how we generate diagnostics for expression typecheck failure:
- Customizing a diagnostic for a specific expression kind is as easy as adding a new method to the FailureDiagnosis class,
and does not require intimate knowledge of the constraint solver’s inner workings.
- As part of this patch, I’ve introduced specialized diagnostics for call, binop, unop, subscript, assignment and inout
expressions, but we can go pretty far with this.
- This also opens up the possibility to customize diagnostics not just for the expression kind, but for the specific types
involved as well.
- For the purpose of presenting accurate type info, partially-specialized subexpressions are individually re-typechecked
free of any contextual types. This allows us to:
- Properly surface subexpression errors.
- Almost completely avoid any type variables in our diagnostics. In cases where they could not be eliminated, we now
substitute in "_".
- More accurately indicate the sources of errors.
- We do a much better job of diagnosing disjunction failures. (So no more nonsensical ‘UInt8’ error messages.)
- We now present reasonable error messages for overload resolution failures, informing the user of partially-matching
parameter lists when possible.
At the very least, these changes address the following bugs:
<rdar://problem/15863738> More information needed in type-checking error messages
<rdar://problem/16306600> QoI: passing a 'let' value as an inout results in an unfriendly diagnostic
<rdar://problem/16449805> Wrong error for struct-to-protocol downcast
<rdar://problem/16699932> improve type checker diagnostic when passing Double to function taking a Float
<rdar://problem/16707914> fatal error: Can't unwrap Optional.None…Optional.swift, line 75 running Master-Detail Swift app built from template
<rdar://problem/16785829> Inout parameter fixit
<rdar://problem/16900438> We shouldn't leak the internal type placeholder
<rdar://problem/16909379> confusing type check diagnostics
<rdar://problem/16951521> Extra arguments to functions result in an unhelpful error
<rdar://problem/16971025> Two Terrible Diagnostics
<rdar://problem/17007804> $T2 in compiler error string
<rdar://problem/17027483> Terrible diagnostic
<rdar://problem/17083239> Mysterious error using find() with Foundation types
<rdar://problem/17149771> Diagnostic for closure with no inferred return value leaks type variables
<rdar://problem/17212371> Swift poorly-worded error message when overload resolution fails on return type
<rdar://problem/17236976> QoI: Swift error for incorrectly typed parameter is confusing/misleading
<rdar://problem/17304200> Wrong error for non-self-conforming protocols
<rdar://problem/17321369> better error message for inout protocols
<rdar://problem/17539380> Swift error seems wrong
<rdar://problem/17559593> Bogus locationless "treating a forced downcast to 'NSData' as optional will never produce 'nil'" warning
<rdar://problem/17567973> 32-bit error message is really far from the mark: error: missing argument for parameter 'withFont' in call
<rdar://problem/17671058> Wrong error message: "Missing argument for parameter 'completion' in call"
<rdar://problem/17704609> Float is not convertible to UInt8
<rdar://problem/17705424> Poor error reporting for passing Doubles to NSColor: extra argument 'red' in call
<rdar://problem/17743603> Swift compiler gives misleading error message in "NSLayoutConstraint.constraintsWithVisualFormat("x", options: 123, metrics: nil, views: views)"
<rdar://problem/17784167> application of operator to generic type results in odd diagnostic
<rdar://problem/17801696> Awful diagnostic trying to construct an Int when .Int is around
<rdar://problem/17863882> cannot convert the expression's type '()' to type 'Seq'
<rdar://problem/17865869> "has different argument names" diagnostic when parameter defaulted-ness differs
<rdar://problem/17937593> Unclear error message for empty array literal without type context
<rdar://problem/17943023> QoI: compiler displays wrong error when a float is provided to a Int16 parameter in init method
<rdar://problem/17951148> Improve error messages for expressions inside if statements by pre-evaluating outside the 'if'
<rdar://problem/18057815> Unhelpful Swift error message
<rdar://problem/18077468> Incorrect argument label for insertSubview(...)
<rdar://problem/18079213> 'T1' is not identical to 'T2' lacks directionality
<rdar://problem/18086470> Confusing Swift error message: error: 'T' is not convertible to 'MirrorDisposition'
<rdar://problem/18098995> QoI: Unhelpful compiler error when leaving off an & on an inout parameter
<rdar://problem/18104379> Terrible error message
<rdar://problem/18121897> unexpected low-level error on assignment to immutable value through array writeback
<rdar://problem/18123596> unexpected error on self. capture inside class method
<rdar://problem/18152074> QoI: Improve diagnostic for type mismatch in dictionary subscripting
<rdar://problem/18242160> There could be a better error message when using [] instead of [:]
<rdar://problem/18242812> 6A1021a : Type variable leaked
<rdar://problem/18331819> Unclear error message when trying to set an element of an array constant (Swift)
<rdar://problem/18414834> Bad diagnostics example
<rdar://problem/18422468> Calculation of constant value yields unexplainable error
<rdar://problem/18427217> Misleading error message makes debugging difficult
<rdar://problem/18439742> Misleading error: "cannot invoke" mentions completely unrelated types as arguments
<rdar://problem/18535804> Wrong compiler error from swift compiler
<rdar://problem/18567914> Xcode 6.1. GM, Swift, assignment from Int64 to NSNumber. Warning shown as problem with UInt8
<rdar://problem/18784027> Negating Int? Yields Float
<rdar://problem/17691565> attempt to modify a 'let' variable with ++ results in typecheck error about @lvalue Float
<rdar://problem/17164001> "++" on let value could give a better error message
Swift SVN r23782
Doing so is safe even though we have mock SDK. The include paths for
modules with the same name in the real and mock SDKs are different, and
the module files will be distinct (because they will have a different
hash).
This reduces test runtime on OS X by 30% and brings it under a minute on
a 16-core machine.
This also uncovered some problems with some tests -- even when run for
iOS configurations, some tests would still run with macosx triple. I
fixed the tests where I noticed this issue.
rdar://problem/19125022
Swift SVN r23683
When determining whether one imported initializer stomps on another,
use the parameter types rather than the full type. This prevents
differences in failability from causing ambiguities.
Swift SVN r21692
Depending on visitation order, we would occasionally leave the factory
method available if we had completely imported the initializer
first. Fixes <rdar://problem/17261609>.
Swift SVN r21361
Thankfully, Doug already put in infrastructure for this, so it just required
adding one more entry to the table.
<rdar://problem/16995980>
Swift SVN r18537
When an Objective-C class method follows the naming convention of a
factory method, i.e., its starting words match the ending words of the
class name, import it as a convenience initializer when it also:
- Returns instancetype (i.e., dynamic Self in Swift parlance)
- Has no NSError** parameters, which indicate the potential for failures
This is under a new flag (-enable-objc-factory-method-constructors)
because it is not generally functional. However, this is a step toward
<rdar://problem/16509024>.
Swift SVN r16479