Make sure to set the linkage correctly, treat the selector data as
non-constant, note that it is externally-initialized, and add it to
llvm.compiler.used rather than llvm.used.
The preferred way to create a nil pointer is to use the 'nil' literal.
Affected types:
AutoreleasingUnsafeMutablePointer
OpaquePointer
UnsafeMutablePointer
UnsafePointer
when working with autoreleased result conventions, and stop
emitting autorelease_return and strong_retain_autoreleased in
SILGen.
The previous representation, in which strong_retain_autoreleased
was divorced from the call site, allowed it to "wander off" and
be cloned. This would at best would break the optimization, but
it could also lead to broken IR due to some heroic but perhaps
misguided efforts in IRGen to produce the exact required code
pattern despite the representational flaws.
The SIL pattern for an autoreleased result now looks exactly
like the pattern for an owned result in both the caller and
the callee. This should be fine as long as interprocedural
optimizations are conservative about convention mismatches.
Optimizations that don't wish to be conservative here should
treat a convention mismatch as an autorelease (if the callee
has an autoreleased result) or a retain (if the formal type
of the call has an autoreleased result).
Fixes rdar://23810212, which is an IRGen miscompile after the
optimizer cloned a strong_retain_autoreleased. There's no
point in adding this test case because the new SIL pattern
inherently prevents this transformation by construction.
The 'autorelease_return' and 'strong_retain_autoreleased'
instructions are now dead, and I will remove them in a
follow-up commit.
And include some supplementary mangling changes:
- Give the first generic param (depth=0, index=0) a single character mangling. Even after removing the self type from method declaration types, 'Self' still shows up very frequently in protocol requirement signatures.
- Fix the mangling of generic parameter counts to elide the count when there's only one parameter at the starting depth of the mangling.
Together these carve another 154KB out of a debug standard library. There's some awkwardness in demangled strings that I'll clean up in subsequent commits; since decl types now only mangle the number of generic params at their own depth, it's context-dependent what depths those represent, which we get wrong now. Currying markers are also wrong, but since free function currying is going away, we can mangle the partial application thunks in different ways.
Swift SVN r32896
'Ss' appears in manglings tens of thousands of times in the standard library and is also incredibly frequent in other modules. This alone is enough to shrink the standard library by 59KB.
Swift SVN r32409
+ (Foo *)foo:(id)obj error:(NSError **)error NS_SWIFT_NAME(init(object:));
+ (Foo *)foo:(id)obj error:(NSError **)error NS_SWIFT_NAME(init(object:error:));
These are now mapped, respectively, to
init(object: AnyObject) throws
init(object: AnyObject, error: ()) throws
rather than both mapping to the first one and having no way to specify the second.
Swift side of rdar://problem/21091469. Requires Clang commits.
Swift SVN r29534
On a factory method, swift_name can have two effects:
- If the custom name has a base name of "init", import the method as an
initializer, even if it doesn't follow the usual naming conventions.
- Otherwise, import the method as a method, even if it /would have/ been
imported as an initializer.
There's a bit of trickiness around NSError**: currently you have to specify
the name of the error parameter on the Clang side even if it's going to be
deleted on the Swift side. We may want to change this later.
The test cases here exposed the issues in the previous two commits,
so this effectively depends on those for passing tests.
More of rdar://problem/19240897.
Swift SVN r28979
All llvm::Functions created during IRGen will have target-cpu and target-features
attributes if they are non-null.
Update testing cases to expect the attribute in function definition.
Add testing case function-target-features.swift to verify target-cpu and
target-features.
rdar://20772331
Swift SVN r28186
This is required to correctly use the mock SDK when the SDK overlay is
built and tested separately. (Otherwise, the mock SDK might not get
used, because the overlay SDK options would expand from the
%-substitution, appear first on the command line, and shadow the mock
SDK in the search path).
Swift SVN r25185
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
Previously the "as" keyword could either represent coercion or or forced
downcasting. This change separates the two notions. "as" now only means
type conversion, while the new "as!" operator is used to perform forced
downcasting. If a program uses "as" where "as!" is called for, we emit a
diagnostic and fixit.
Internally, this change removes the UnresolvedCheckedCastExpr class, in
favor of directly instantiating CoerceExpr when parsing the "as"
operator, and ForcedCheckedCastExpr when parsing the "as!" operator.
Swift SVN r24253
Doing so is safe even though we have mock SDK. The include paths for
modules with the same name in the real and mock SDKs are different, and
the module files will be distinct (because they will have a different
hash).
This reduces test runtime on OS X by 30% and brings it under a minute on
a 16-core machine.
This also uncovered some problems with some tests -- even when run for
iOS configurations, some tests would still run with macosx triple. I
fixed the tests where I noticed this issue.
rdar://problem/19125022
Swift SVN r23683
This is needed for tests which define internal functions which should not be eliminated.
So far this was not needed because of a hack which prevented whole-module-optimizations for tests.
Swift SVN r22658
Now the SILLinkage for functions and global variables is according to the swift visibility (private, internal or public).
In addition, the fact whether a function or global variable is considered as fragile, is kept in a separate flag at SIL level.
Previously the linkage was used for this (e.g. no inlining of less visible functions to more visible functions). But it had no effect,
because everything was public anyway.
For now this isFragile-flag is set for public transparent functions and for everything if a module is compiled with -sil-serialize-all,
i.e. for the stdlib.
For details see <rdar://problem/18201785> Set SILLinkage correctly and better handling of fragile functions.
The benefits of this change are:
*) Enable to eliminate unused private and internal functions
*) It should be possible now to use private in the stdlib
*) The symbol linkage is as one would expect (previously almost all symbols were public).
More details:
Specializations from fragile functions (e.g. from the stdlib) now get linkonce_odr,default
linkage instead of linkonce_odr,hidden, i.e. they have public visibility.
The reason is: if such a function is called from another fragile function (in the same module),
then it has to be visible from a third module, in case the fragile caller is inlined but not
the specialized function.
I had to update lots of test files, because many CHECK-LABEL lines include the linkage, which has changed.
The -sil-serialize-all option is now handled at SILGen and not at the Serializer.
This means that test files in sil format which are compiled with -sil-serialize-all
must have the [fragile] attribute set for all functions and globals.
The -disable-access-control option doesn't help anymore if the accessed module is not compiled
with -sil-serialize-all, because the linker will complain about unresolved symbols.
A final note: I tried to consider all the implications of this change, but it's not a low-risk change.
If you have any comments, please let me know.
Swift SVN r22215
dynamicCastClass assumes that the destination type is a
Swift class type.
dynamicCastObjCClass assumes that the destination type is
an ObjC class type (represented as ObjC metadata, not type
metadata).
dynamicCastUnknownClass assumes only that the destination
type is some kind of class.
Swift SVN r18776
There's a bit of a reshuffle of the ExplicitCastExpr subclasses:
- The existing ConditionalCheckedCastExpr expression node now represents
"as?".
- A new ForcedCheckedCastExpr node represents "as" when it is a
downcast.
- CoerceExpr represents "as" when it is a coercion.
- A new UnresolvedCheckedCastExpr node describes "as" before it has
been type-checked down to ForcedCheckedCastExpr or CoerceExpr. This
wasn't a strictly necessary change, but it helps us detangle what's
going on.
There are a few new diagnostics to help users avoid getting bitten by
as/as? mistakes:
- Custom errors when a forced downcast (as) is used as the operand
of postfix '!' or '?', with Fix-Its to remove the '!' or make the
downcast conditional (with as?), respectively.
- A warning when a forced downcast is injected into an optional,
with a suggestion to use a conditional downcast.
- A new error when the postfix '!' is used for a contextual
downcast, with a Fix-It to replace it with "as T" with the
contextual type T.
Lots of test updates, none of which felt like regressions. The new
tests are in test/expr/cast/optionals.swift.
Addresses <rdar://problem/17000058>
Swift SVN r18556
Previously, the getter and setter for a property could disagree on what the
"type of the property" was: Unmanaged<CFType> vs. CFType, or COpaquePointer
vs. CMutableVoidPointer. Now, we treat property accessors as distinct from
normal methods when importing their parameter and result types, and have
those types follow the same rules as they would for the property itself.
This will need a bit of cleanup work once we're importing implicit properties
everywhere, but this handles the crashes and unfortunate limitations we were
seeing for WWDC.
<rdar://problem/16544938>
Swift SVN r17987
Tweak the import of Objective-C methods to build the proper FuncExpr
and tag the FuncDecl as an Objective-C method, along with a few other
tweaks, so calls to the imported Objective-C methods go through
objc_msgSend().
At this moment, this is aborting in the Objective-C runtime due to an
unrecognized selector. The issue does not appear related to the
importer.
Swift SVN r3255