"minimal" is defined as the set of requirements that would be
passed to a function with the type's generic signature that
takes the thick metadata of the parent type as its only argument.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
This function points the ivar offsets at per-metadata field offsets
before passing off the class to the Objective-C runtime, ensuring
we don't slide the global ivar offsets multiple times.
The swift_initializeSuperclass() function does not do this ivar
cloning, so it cannot be used for generic classes even if they do
not have generically-sized fields.
An alternative would be to refactor the runtime to clone ivar offset
vectors in swift_initializeSuperclass(), but this doesn't seem to be
worth it for now.
This prevents the linker from trying to emit relative relocations to locally-defined public symbols into dynamic libraries, which gives ld.so heartache.
- Implement emission of type references for nominal type field
reflection, using a small custom encoder resulting in packed
structs, not strings. This will let us embed 7-bit encoded
32-bit relative offsets directly in the structure (not yet
hooked in).
- Use the AST Mangler for encoding type references
Archetypes and internal references were complicating this before, so we
can take the opportunity to reuse this machinery and avoid unique code
and new ABI.
Next up: Tests for reading the reflection sections and converting the
demangle tree into a tree of type references.
Todo: For concrete types, serialize the types for associated types of
their conformances to bootstrap the typeref substitution process.
rdar://problem/15617914
Change conformance records to reference NominalTypeDescriptors instead of
metadata patterns for resilient or generic types.
For a resilient type, we don't know if the metadata is constant or not,
so we can't directly reference either constant metadata or the metadata
template.
Also, whereas previously NominalTypeDescriptors would point to the
metadata pattern, they now point to the metadata accessor function.
This allows the recently-added logic for instantiating concrete types
by name to continue working.
In turn, swift_initClassMetadata_UniversalStrategy() would reach into
the NominalTypeDescriptor to get the pattern out, so that its bump
allocator could be used to allocate ivar tables. Since the pattern is
no longer available this way, we have to pass it in as a parameter.
In the future, we will split off the read-write metadata cache entry
from the pattern; then swift_initClassMetadata_UniversalStrategy() can
just take a pointer to that, since it doesn't actually need anything
else from the pattern.
Since Clang doesn't guarantee alignment for function pointers, I had
to kill the cute trick that packed the NominalTypeKind into the low
bits of the relative pointer to the pattern; instead the kind is now
stored out of line. We could fix this by packing it with some other
field, or keep it this way in case we add new flags later.
Now that generic metadata is instantiated by calling accessor functions,
this change removes the last remaining place that metadata patterns were
referenced from outside the module they were defined in. Now, the layout
of the metadata pattern and the behavior of swift_getGenericMetadata()
is purely an implementation detail of generic metadata accessors.
This patch allows two previously-XFAIL'd tests to pass.
Instead of directly emitting calls to swift_getGenericMetadata*() and
referencing metadata templates, call a metadata accessor function
corresponding to the UnboundGenericType of the NominalTypeDecl.
The body of this accessor forwards arguments to a runtime metadata
instantiation function, together with the template.
Also, move some code around, so that metadata accesses which are
only done as part of the body of a metadata accessor function are
handled separately in emitTypeMetadataAccessFunction().
Apart from protocol conformances, this means metadata templates are
no longer referenced from outside the module where they were defined.
Decrease the size of nominal type descriptors and make them true-const by relative-addressing the other metadata they need to reference, which should all be included in the same image as the descriptor itself. Relative-referencing string constants exposes a bug in the Apple linker, which crashes when resolving relative relocations to coalesceable symbols (rdar://problem/22674524); work around this for now by revoking the `unnamed_addr`-ness of string constants that we take relative references to. (I haven't tested whether GNU ld or gold also have this problem on Linux; it may be possible to conditionalize the workaround to only apply to Darwin targets for now.)
Now that all the machinery is in place, the ClassMetadataBuilder
can (more accurately) query the ClassLayout instead of trying to
re-derive whether the field offset vector is dependent, etc.
Apart from performing dynamic layout for resiliently-sized fields
in concrete classes, this also lets us *skip* dynamic layout
if we have a generic class without any dependent fields.
I haven't tested subclassing with resilient field layout yet, but
getting that working is the next step and should not be too much
work.
Also, swift_initClassMetadata_UniversalStrategy() only stores
the computed field offsets in the field offset globals when the
Objective-C runtime is available, because it gets the offset
pointers from the Objective-C class rodata. On Linux, we will
need to emit code to copy from the field offset vector into
field offset globals in IRGen. This is pretty easy, but I'll do
it in a follow-up patch so for now the new execution test is
XFAIL'd on Linux.
It is questionable if emitting globals for constant offsets is of
any use; the only scenario where one could not compute the offset
directly in IRGen is if the class has a fixed-size layout inside
its own resilience domain, but has a non-fixed layout outside,
*and* we're doing direct stored property access.
Right now we don't plan on doing this, but it might come up in
the future with more exotic resilience domain configurations or
perhaps optimizations.
Now, such classes will emit a metadata pattern and use the
generic metadata instantiation logic.
This was all wired up to handle the case of no generic
parameters previously, to support resilient struct layout
in the runtime.
The swift_initializeSuperclass() entry point still exists,
providing a fast path for when there's no field layout to
do, which is currently always true if we have a concrete
class.
This entry point no longer needs the global lock, since
now we get a per-class lock from the metadata cache.
Also, previously we would call the superclass accessor
function on every access of class metadata for a concrete
subclass of a generic class. Now that we re-use the
existing metadata cache logic, this extra call only occurs
during initialization.
Both swift_initializeSuperclass() and
swift_initClassMetadata_UniversalStrategy() used to take
the superclass as a parameter, but this isn't really
necessary, since it was loaded out of the class metadata
immediately prior to the call by the caller. Removing
this parameter makes the ABI a little simpler.
Once class layout supports resilient types, we will also
use swift_initClassMetadata_UniversalStrategy() to lay
out classes with resilient types as fields.
Singleton metadata caches will still allocate a copy of
the template, which is a slight performance regression
from the previous implementation of concrete subclasses
of generic classes. This will be optimized soon.
Right now, the template can always be modified in place;
in the future, it will be possible to modify in place as
long as the superclass is fixed-layout; a resilient superclass
might add or remove fields, thus we cannot leave room for
it in the metadata of the subclass, and will need to grow
the metadata and slide field offsets at runtime using a
new entry point.
Also, the representation of the cache itself could be
optimized to handle the singleton case, since all we
really need here is a lock without any kind of mapping
table.
Move the following from IRGen to runtime:
- Copying generic parameters from superclass to subclass
- Copying field offsets from superclass to subclass
- Initializing the Objective-C runtime name of the subclass
This eliminates some duplication between the generic subclass and
concrete subclass of a generic class cases.
Also this should reduce generated code size and have no impact on
performance (the instantiation logic only runs once per substituted
type).
Decrease the size of nominal type descriptors and make them true-const by relative-addressing the other metadata they need to reference, which should all be included in the same image as the descriptor itself. Relative-referencing string constants exposes a bug in the Apple linker, which crashes when resolving relative relocations to coalesceable symbols (rdar://problem/22674524); work around this for now by revoking the `unnamed_addr`-ness of string constants that we take relative references to. (I haven't tested whether GNU ld or gold also have this problem on Linux; it may be possible to conditionalize the workaround to only apply to Darwin targets for now.)
And include some supplementary mangling changes:
- Give the first generic param (depth=0, index=0) a single character mangling. Even after removing the self type from method declaration types, 'Self' still shows up very frequently in protocol requirement signatures.
- Fix the mangling of generic parameter counts to elide the count when there's only one parameter at the starting depth of the mangling.
Together these carve another 154KB out of a debug standard library. There's some awkwardness in demangled strings that I'll clean up in subsequent commits; since decl types now only mangle the number of generic params at their own depth, it's context-dependent what depths those represent, which we get wrong now. Currying markers are also wrong, but since free function currying is going away, we can mangle the partial application thunks in different ways.
Swift SVN r32896
'Ss' appears in manglings tens of thousands of times in the standard library and is also incredibly frequent in other modules. This alone is enough to shrink the standard library by 59KB.
Swift SVN r32409
This is more resilient, since we want to be able to add more information behind the address point of type objects. The start of the metadata object is now an internal "full metadata" symbol.
Note that we can't do this for known opaque metadata from the C++ runtime, since clang doesn't have a good way to emit offset symbol aliases, so for non-nominal metadata objects we still emit an adjustment inline. We also aren't able to generate references to aliases within the same module due to an MC bug with alias refs on i386 and armv7 (rdar://problem/22450593).
Swift SVN r31523
This is more resilient, since we want to be able to add more information behind the address point of type objects, and also makes IR a lot less cluttered. The start of the metadata object is now an internal "full metadata" symbol.
Note that we can't do this for known opaque metadata from the C++ runtime, since clang doesn't have a good way to emit offset symbol aliases, so for non-nominal metadata objects we still emit an adjustment inline.
Swift SVN r31515
The absolute symbol reference isn't needed on OS X >=10.9 or any iOS/watchOS, which are the only Darwin platforms Swift targets. Fixes rdar://problem/22339638.
Swift SVN r31367
All llvm::Functions created during IRGen will have target-cpu and target-features
attributes if they are non-null.
Update testing cases to expect the attribute in function definition.
Add testing case function-target-features.swift to verify target-cpu and
target-features.
rdar://20772331
Swift SVN r28186
The only caveat is that:
1. We do not properly recognize when we have a let binding and we
perform a guaranteed dynamic call. In such a case, we add an extra
retain, release pair around the call. In order to get that case I will
need to refactor some code in Callee. I want to make this change, but
not at the expense of getting the rest of this work in.
2. Some of the protocol witness thunks generated have unnecessary
retains or releases in a similar manner.
But this is a good first step.
I am going to send a large follow up email with all of the relevant results, so
I can let the bots chew on this a little bit.
rdar://19933044
Swift SVN r27241
correct preconditions for ObjC layout, and write the
computed offsets back to global ivar offset variables
when present.
Swift will use the global variables for accesses to
ivars when it can show that their offsets are
non-dependent.
Fixes a major problem with generic subclasses of ObjC
classes whose dynamic layout does not match the layout
in their @interface.
rdar://19583881
Swift SVN r25536
We still preserve IRGen's current ordering of vtable slots, but use SIL's record of which SILFunction implements which method instead of walking overrides independently. Another step on the way to rdar://problem/19321484; if SILGen determines that a thunk is needed to interface an override with its base method, IRGen will now pick it up. (Thunk generation is still busted in certain inheritance cases I need to fix before declaring victory though.)
Swift SVN r24732
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
Doing so is safe even though we have mock SDK. The include paths for
modules with the same name in the real and mock SDKs are different, and
the module files will be distinct (because they will have a different
hash).
This reduces test runtime on OS X by 30% and brings it under a minute on
a 16-core machine.
This also uncovered some problems with some tests -- even when run for
iOS configurations, some tests would still run with macosx triple. I
fixed the tests where I noticed this issue.
rdar://problem/19125022
Swift SVN r23683
We want to use the reserved space in the metadata pattern for protocol conformance caching, and this link lets us find the metadata pattern from an instance of the generic type.
Swift SVN r22898
-enable-source-import doesn't play nice with debug info, and we want to be
able to run all tests with -g added. The last few tests that require
-enable-source-import could be built with --no-debug-info, or however we
end up spelling that.
rdar://problem/18140021 (most of it)
Swift SVN r22742
This is controlled by a new isWholeModule() attribute in SILModule.
It gives about 9% code size reduction on the benchmark executables.
For test-suite reasons it is currently not done for the stdlib.
Swift SVN r22491
instances of Swift subclasses of ObjC classes.
We were already doing this in the runtime. This patch
unhides the runtime's mask word (swift_isaMask) and makes
IR-gen take advantage of it when it can.
Swift SVN r21592
pass the size and alignment of each field. Take advantage
of this to pass a constant size and alignment when
possible.
This avoids the need to recursively find type metadata for
every field type, allowing generic recursively-structured
classes to be built. There are a number of more complicated
cases that this approach isn't good enough for, but this
is good enough for now to fix rdar://18067671.
Also make an effort to properly support generic subclasses
of Objective-C classes.
Swift SVN r21506