This prevents the linker from trying to emit relative relocations to locally-defined public symbols into dynamic libraries, which gives ld.so heartache.
This reverts commit 062d14b422.
Revert "Fix a swift argument initialization bug - swift argument should be initialized"
This reverts commit 273b149583.
This breaks DebugAssert as well as REPL builds. Revert to appease the bots while i
look further.
after argc and argv are initialized. rdar://24250684
I reordered the CHECK statements in some tests to make them pass.
I tested this on Darwin and Linux.
Instead of directly emitting calls to swift_getGenericMetadata*() and
referencing metadata templates, call a metadata accessor function
corresponding to the UnboundGenericType of the NominalTypeDecl.
The body of this accessor forwards arguments to a runtime metadata
instantiation function, together with the template.
Also, move some code around, so that metadata accesses which are
only done as part of the body of a metadata accessor function are
handled separately in emitTypeMetadataAccessFunction().
Apart from protocol conformances, this means metadata templates are
no longer referenced from outside the module where they were defined.
And include some supplementary mangling changes:
- Give the first generic param (depth=0, index=0) a single character mangling. Even after removing the self type from method declaration types, 'Self' still shows up very frequently in protocol requirement signatures.
- Fix the mangling of generic parameter counts to elide the count when there's only one parameter at the starting depth of the mangling.
Together these carve another 154KB out of a debug standard library. There's some awkwardness in demangled strings that I'll clean up in subsequent commits; since decl types now only mangle the number of generic params at their own depth, it's context-dependent what depths those represent, which we get wrong now. Currying markers are also wrong, but since free function currying is going away, we can mangle the partial application thunks in different ways.
Swift SVN r32896
'Ss' appears in manglings tens of thousands of times in the standard library and is also incredibly frequent in other modules. This alone is enough to shrink the standard library by 59KB.
Swift SVN r32409
These classes don't show up well in generated headers (rdar://problem/20855568),
can't actually be allocated from Objective-C (rdar://problem/17184317), and
make the story of "what is exposed to Objective-C" more complicated. Better
to just disallow them.
All classes are still "id-compatible" in that they can be converted to
AnyObject and passed to Objective-C, they secretly implement NSObjectProtocol
(via our SwiftObject root class), and their members can still be individually
exposed to Objective-C.
The frontend flag -disable-objc-attr-requires-foundation-module will disable
this requirement as well, which is still necessary for both the standard
library and a variety of tests I didn't feel like transforming.
Swift SVN r29760
All llvm::Functions created during IRGen will have target-cpu and target-features
attributes if they are non-null.
Update testing cases to expect the attribute in function definition.
Add testing case function-target-features.swift to verify target-cpu and
target-features.
rdar://20772331
Swift SVN r28186
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
Refuse to load a module if it was compiled for a different architecture or
OS, or if its minimum deployment target is newer than the current target.
Additionally, provide the target triple as part of pre-loading validation
for clients who care (like LLDB).
Part of rdar://problem/17670778
Swift SVN r24469
Doing so is safe even though we have mock SDK. The include paths for
modules with the same name in the real and mock SDKs are different, and
the module files will be distinct (because they will have a different
hash).
This reduces test runtime on OS X by 30% and brings it under a minute on
a 16-core machine.
This also uncovered some problems with some tests -- even when run for
iOS configurations, some tests would still run with macosx triple. I
fixed the tests where I noticed this issue.
rdar://problem/19125022
Swift SVN r23683
Move the uniquing information for ForeignTypeMetadata behind the address point so we can share the layout between foreign classes and the existing layout for struct and enum metadata. Emit metadata records for imported structs and enums as foreign metadata candidates, and dynamically unique references to the metadata by calling swift_getForeignTypeMetadata.
Swift SVN r23081
-enable-source-import doesn't play nice with debug info, and we want to be
able to run all tests with -g added. The last few tests that require
-enable-source-import could be built with --no-debug-info, or however we
end up spelling that.
rdar://problem/18140021 (most of it)
Swift SVN r22742
This is needed for tests which define internal functions which should not be eliminated.
So far this was not needed because of a hack which prevented whole-module-optimizations for tests.
Swift SVN r22658
Now the SILLinkage for functions and global variables is according to the swift visibility (private, internal or public).
In addition, the fact whether a function or global variable is considered as fragile, is kept in a separate flag at SIL level.
Previously the linkage was used for this (e.g. no inlining of less visible functions to more visible functions). But it had no effect,
because everything was public anyway.
For now this isFragile-flag is set for public transparent functions and for everything if a module is compiled with -sil-serialize-all,
i.e. for the stdlib.
For details see <rdar://problem/18201785> Set SILLinkage correctly and better handling of fragile functions.
The benefits of this change are:
*) Enable to eliminate unused private and internal functions
*) It should be possible now to use private in the stdlib
*) The symbol linkage is as one would expect (previously almost all symbols were public).
More details:
Specializations from fragile functions (e.g. from the stdlib) now get linkonce_odr,default
linkage instead of linkonce_odr,hidden, i.e. they have public visibility.
The reason is: if such a function is called from another fragile function (in the same module),
then it has to be visible from a third module, in case the fragile caller is inlined but not
the specialized function.
I had to update lots of test files, because many CHECK-LABEL lines include the linkage, which has changed.
The -sil-serialize-all option is now handled at SILGen and not at the Serializer.
This means that test files in sil format which are compiled with -sil-serialize-all
must have the [fragile] attribute set for all functions and globals.
The -disable-access-control option doesn't help anymore if the accessed module is not compiled
with -sil-serialize-all, because the linker will complain about unresolved symbols.
A final note: I tried to consider all the implications of this change, but it's not a low-risk change.
If you have any comments, please let me know.
Swift SVN r22215
User-written functions can trigger the use of delayed protocols on imported
types. In the case of enums and structs, it's possible that we need to
synthesize a conformance for one of these protocols. We were failing to do
so because we were checking imported types before looking at any user code,
and deciding not to bother with the delayed protocols because no one had
referenced them yet.
This isn't necessarily a good long-term solution because it doesn't handle
implicitly-defined functions triggering the use of implicit conformances
on imported types. The general problem of "this enum was never compared
so I never made an Equatable performance" is still there, just much less
likely (since our synthesized declarations are usually quite simple). We
may want to revisit this later to make it more robust.
I also couldn't find a reduced test case that triggered this issue. The
reported code looks very similar to the test case I added, but the one I
added doesn't actually fail before this commit. I'm including it anyway to
guard against regressions.
rdar://problem/18198880
Swift SVN r21840
Borrow the scalar type of the raw type as the representation type of C enums, and use the raw values from C as the discriminator values of the cases.
Swift SVN r9988