Which consists of
* removing redundant `address_to_pointer`-`pointer_to_address` pairs
* optimize `index_raw_pointer` of a manually computed stride to `index_addr`
* remove or increase the alignment based on a "assumeAlignment" builtin
This is a big code cleanup but also has some functional differences for the `address_to_pointer`-`pointer_to_address` pair removal:
* It's not done if the resulting SIL would result in a (detectable) use-after-dealloc_stack memory lifetime failure.
* It's not done if `copy_value`s must be inserted or borrow-scopes must be extended to comply with ownership rules (this was the task of the OwnershipRAUWHelper).
Inserting copies is bad anyway.
Extending borrow-scopes would only be required if the original lifetime of the pointer extends a borrow scope - which shouldn't happen in save code. Therefore this is a very rare case which is not worth handling.
`String(describing:)` does a bunch of dynamic casts
that can be pretty slow. Use interpolation instead,
which bypasses them.
For `swift-frontend`, this brings the time taken
for type-checking an empty file down from ~100ms
to ~70ms.
For `swift build`, this brings the time taken for
a null build down from ~600ms to ~450ms (the
larger delta is presumably due to the fact that
there's much more Swift code in `swift-package`).
Canonicalize a `fix_lifetime` from an address to a `load` + `fix_lifetime`:
```
%1 = alloc_stack $T
...
fix_lifetime %1
```
->
```
%1 = alloc_stack $T
...
%2 = load %1
fix_lifetime %2
```
This transformation is done for `alloc_stack` and `store_borrow` (which always has an `alloc_stack` operand).
The benefit of this transformation is that it enables other optimizations, like mem2reg.
This peephole optimization was already done in SILCombine, but it didn't handle store_borrow.
A good opportunity to make an instruction simplification out of it.
This is part of fixing regressions when enabling OSSA modules:
rdar://140229560
* Remove dead `load_borrow` instructions (replaces the old peephole optimization in SILCombine)
* If the `load_borrow` is followed by a `copy_value`, combine both into a `load [copy]`
It hoists `destroy_value` instructions without shrinking an object's lifetime.
This is done if it can be proved that another copy of a value (either in an SSA value or in memory) keeps the referenced object(s) alive until the original position of the `destroy_value`.
```
%1 = copy_value %0
...
last_use_of %0
// other instructions
destroy_value %0 // %1 is still alive here
```
->
```
%1 = copy_value %0
...
last_use_of %0
destroy_value %0
// other instructions
```
The benefit of this optimization is that it can enable copy-propagation by moving destroys above deinit barries and access scopes.
It removes a `copy_value` where the source is a guaranteed value, if possible:
```
%1 = copy_value %0 // %0 = a guaranteed value
// uses of %1
destroy_value %1 // borrow scope of %0 is still valid here
```
->
```
// uses of %0
```
This optimization is very similar to the LoadCopyToBorrow optimization.
Therefore I merged both optimizations into a single file and renamed it to "CopyToBorrowOptimization".
The optimization replaces a `load [copy]` with a `load_borrow` if possible.
```
%1 = load [copy] %0
// no writes to %0
destroy_value %1
```
->
```
%1 = load_borrow %0
// no writes to %0
end_borrow %1
```
The new implementation uses alias-analysis (instead of a simple def-use walk), which is much more powerful.
rdar://115315849
As the optimizer uses more and more AST stuff, it's now time to create an "AST" module.
Initially it defines following AST datastructures:
* declarations: `Decl` + derived classes
* `Conformance`
* `SubstitutionMap`
* `Type` and `CanonicalType`
Some of those were already defined in the SIL module and are now moved to the AST module.
This change also cleans up a few things:
* proper definition of `NominalTypeDecl`-related APIs in `SIL.Type`
* rename `ProtocolConformance` to `Conformance`
* use `AST.Type`/`AST.CanonicalType` instead of `BridgedASTType` in SIL and the Optimizer
The main changes are:
*) Rewrite everything in swift. So far, parts of memory-behavior analysis were already implemented in swift. Now everything is done in swift and lives in `AliasAnalysis.swift`. This is a big code simplification.
*) Support many more instructions in the memory-behavior analysis - especially OSSA instructions, like `begin_borrow`, `end_borrow`, `store_borrow`, `load_borrow`. The computation of end_borrow effects is now much more precise. Also, partial_apply is now handled more precisely.
*) Simplify and reduce type-based alias analysis (TBAA). The complexity of the old TBAA comes from old days where the language and SIL didn't have strict aliasing and exclusivity rules (e.g. for inout arguments). Now TBAA is only needed for code using unsafe pointers. The new TBAA handles this - and not more. Note that TBAA for classes is already done in `AccessBase.isDistinct`.
*) Handle aliasing in `begin_access [modify]` scopes. We already supported truly immutable scopes like `begin_access [read]` or `ref_element_addr [immutable]`. For `begin_access [modify]` we know that there are no other reads or writes to the access-address within the scope.
*) Don't cache memory-behavior results. It turned out that the hit-miss rate was pretty bad (~ 1:7). The overhead of the cache lookup took as long as recomputing the memory behavior.
Changes in this CR add part of the, Swift based, Autodiff specific
closure specialization optimization pass. The pass does not modify any
code nor does it even exist in any of the optimization pipelines. The
rationale for pushing this partially complete optimization pass upstream
is to keep up with the breaking changes in the underlying Swift based
compiler infrastructure.
Compute, update and handle borrowed-from instruction in various utilities and passes.
Also, used borrowed-from to simplify `gatherBorrowIntroducers` and `gatherEnclosingValues`.
Replace those utilities by `Value.getBorrowIntroducers` and `Value.getEnclosingValues`, which return a lazily computed Sequence of borrowed/enclosing values.
Add a new mandatory BooleanLiteralFolding pass which constant folds conditional branches with boolean literals as operands.
```
%1 = integer_literal -1
%2 = apply %bool_init(%1) // Bool.init(_builtinBooleanLiteral:)
%3 = struct_extract %2, #Bool._value
cond_br %3, bb1, bb2
```
->
```
...
br bb1
```
This pass is intended to run before DefiniteInitialization, where mandatory inlining and constant folding didn't run, yet (which would perform this kind of optimization).
This optimization is required to let DefiniteInitialization handle boolean literals correctly.
For example in infinite loops:
```
init() {
while true { // DI need to know that there is no loop exit from this while-statement
if some_condition {
member_field = init_value
break
}
}
}
```
By default it lowers the builtin to an `alloc_vector` with a paired `dealloc_stack`.
If the builtin appears in the initializer of a global variable and the vector elements are initialized,
a statically initialized global is created where the initializer is a `vector` instruction.
In regular swift this is a nice optimization. In embedded swift it's a requirement, because the compiler needs to be able to specialize generic deinits of non-copyable types.
The new de-virtualization utilities are called from two places:
* from the new DeinitDevirtualizer pass. It replaces the old MoveOnlyDeinitDevirtualization, which is very basic and does not fulfill the needs for embedded swift.
* from MandatoryPerformanceOptimizations for embedded swift
ASTGen always builds with the host Swift compiler, without requiring
bootstrapping, and is enabled in more places. Move the regex literal
parsing logic there so it is enabled in more host environments, and
makes use of CMake's Swift support. Enable all of the regex literal
tests when ASTGen is built, to ensure everything is working.
Remove the "AST" and "Parse" Swift modules from SwiftCompilerSources,
because they are no longer needed.
Introduce two modes of bridging:
* inline mode: this is basically how it worked so far. Using full C++ interop which allows bridging functions to be inlined.
* pure mode: bridging functions are not inlined but compiled in a cpp file. This allows to reduce the C++ interop requirements to a minimum. No std/llvm/swift headers are imported.
This change requires a major refactoring of bridging sources. The implementation of bridging functions go to two separate files: SILBridgingImpl.h and OptimizerBridgingImpl.h.
Depending on the mode, those files are either included in the corresponding header files (inline mode), or included in the c++ file (pure mode).
The mode can be selected with the BRIDGING_MODE cmake variable. By default it is set to the inline mode (= existing behavior). The pure mode is only selected in certain configurations to work around C++ interop issues:
* In debug builds, to workaround a problem with LLDB's `po` command (rdar://115770255).
* On windows to workaround a build problem.
For chains of async functions where suspensions can be statically
proven to never be required, this pass removes all suspensions and
turns the functions into synchronous functions.
For example, this function does not actually require any suspensions,
once the correct executor is acquired upon initial entry:
```
func fib(_ n: Int) async -> Int {
if n <= 1 { return n }
return await fib(n-1) + fib(n-2)
}
```
So we can turn the above into this for better performance:
```
func fib() async -> Int {
return fib_sync()
}
func fib_sync(_ n: Int) -> Int {
if n <= 1 { return n }
return fib(n-1) + fib(n-2)
}
```
while rewriting callers of `fib` to use the `sync` entry-point
when we can prove that it will be invoked on a compatible executor.
This pass is currently experimental and under development. Thus, it
is disabled by default and you must use
`-enable-experimental-async-demotion` to try it.
It lowers let property accesses of classes.
Lowering consists of two tasks:
* In class initializers, insert `end_init_let_ref` instructions at places where all let-fields are initialized.
This strictly separates the life-range of the class into a region where let fields are still written during
initialization and a region where let fields are truly immutable.
* Add the `[immutable]` flag to all `ref_element_addr` instructions (for let-fields) which are in the "immutable"
region. This includes the region after an inserted `end_init_let_ref` in an class initializer, but also all
let-field accesses in other functions than the initializer and the destructor.
This pass should run after DefiniteInitialization but before RawSILInstLowering (because it relies on `mark_uninitialized` still present in the class initializer).
Note that it's not mandatory to run this pass. If it doesn't run, SIL is still correct.
Simplified example (after lowering):
bb0(%0 : @owned C): // = self of the class initializer
%1 = mark_uninitialized %0
%2 = ref_element_addr %1, #C.l // a let-field
store %init_value to %2
%3 = end_init_let_ref %1 // inserted by lowering
%4 = ref_element_addr [immutable] %3, #C.l // set to immutable by lowering
%5 = load %4
The new implementation has several benefits compared to the old C++ implementation:
* It is significantly simpler. It optimizes each load separately instead of all at once with bit-field based dataflow.
* It's using alias analysis more accurately which enables more loads to be optimized
* It avoids inserting additional copies in OSSA
The algorithm is a data flow analysis which starts at the original load and searches for preceding stores or loads by following the control flow in backward direction.
The preceding stores and loads provide the "available values" with which the original load can be replaced.
The old C++ pass didn't catch a few cases.
Also:
* The new pass is significantly simpler: it doesn't perform dataflow for _all_ memory locations at once using bitfields, but handles each store separately. (In both implementations there is a complexity limit in place to avoid quadratic complexity)
* The new pass works with OSSA
It sets the `[bare]` attribute for `alloc_ref` and `global_value` instructions if their header (reference count and metatype) is not used throughout the lifetime of the object.
This allows to run the NamedReturnValueOptimization only late in the pipeline.
The optimization shouldn't be done before serialization, because it might prevent predictable memory optimizations in the caller after inlining.
It converts a lazily initialized global to a statically initialized global variable.
When this pass runs on a global initializer `[global_init_once_fn]` it tries to create a static initializer for the initialized global.
```
sil [global_init_once_fn] @globalinit {
alloc_global @the_global
%a = global_addr @the_global
%i = some_const_initializer_insts
store %i to %a
}
```
The pass creates a static initializer for the global:
```
sil_global @the_global = {
%initval = some_const_initializer_insts
}
```
and removes the allocation and store instructions from the initializer function:
```
sil [global_init_once_fn] @globalinit {
%a = global_addr @the_global
%i = some_const_initializer_insts
}
```
The initializer then becomes a side-effect free function which let's the builtin-simplification remove the `builtin "once"` which calls the initializer.
If a `debug_step` has the same debug location as a previous or succeeding instruction it is removed.
It's just important that there is at least one instruction for a certain debug location so that single stepping on that location will work.