We know the number of the entries. Allocate the storage in ASTContext
directly, then initialize it transforming the bridged values.
Add ASTContext::AllocateTransform() helper function.
Sets the `PreModuleImportCallback`'s setter return type to void to
account for the lambda functions in LLDB's progress reporting not
actually using its return value. Also adds a Doxygen comment for `SetPreModuleImportCallback`
`PreModuleImportCallback` is a variable for a callback function used
specifically by LLDB to report progress updates on importing Swift
modules in LLDB. This commit adds a setter for `PreModuleImportCallback`
for greater flexibility in LLDB and removes the reference to this
variable in the constructor.
Related to https://github.com/apple/llvm-project/pull/7769
rdar://105286354
Extend function type metadata with an entry for the thrown error type,
so that thrown error types are represented at runtime as well. Note
that this required the introduction of "extended" function type
flags into function type metadata, because we would have used the last
bit. Do so, and define one extended flag bit as representing typed
throws.
Add `swift_getExtendedFunctionTypeMetadata` to the runtime to build
function types that have the extended flags and a thrown error type.
Teach IR generation to call this function to form the metadata, when
appropriate.
Introduce all of the runtime mangling/demangling support needed for
thrown error types.
Using symbolic references instead of a text based mangling avoids the
expensive type descriptor scan when objective c protocols are requested.
rdar://111536582
From being a scattered collection of 'static' methods in ScanDependencies.cpp
and member methods of ASTContext. This makes 'ScanDependencies.cpp' much easier
to read, and abstracts the actual scanning logic away to a place with common
state which will make it easier to reason about in the future.
Plus tweak `DefaultDefinitionTypeRequest` caching to support querying the
cached type when dumping. This fixes a crash where type computation is
triggered in the dumper before import resolution in `-dump-parse` mode.
LLVM deprecated, renamed, and removed a bunch of APIs. This patch
contains a lot of the changes needed to deal with that.
The SetVector type changed the template parameters.
APInt updated multiple names, countPopulation became popcount,
getAllOnesValue became getAllOnes, getNullValue became getZero, etc...
Clang type nullability check stopped taking a clang AST context.
The LLVM IRGen Function type stopped exposing basic block list directly,
but gained enough API surface that the translation isn't too bad.
(GenControl.cpp, LLVMMergeFunctions.cpp)
llvm::Optional had a transform function. That was being used in a couple
of places, so I've added a new implementation under STLExtras that
transforms valid optionals, otherwise it returns nullopt.
Ensure that context descriptor pointers are signed in the runtime by putting the ptrauth_struct attribute on the types.
We use the new __builtin_ptrauth_struct_key/disc to conditionally apply ptrauth_struct to TrailingObjects based on the signing of the base type, so that pointers to TrailingObjects get signed when used with a context descriptor pointer.
We add new runtime entrypoints that take signed pointers where appropriate, and have the compiler emit calls to the new entrypoints when targeting a sufficiently new OS.
rdar://111480914
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Setting closure and local discriminators depends on an in-order walk
of the AST. For macros, it was walking into both macro expansions and
arguments. However, this doesn't work well with lazy macro expansions,
and could result in some closures/local variables not getting
discriminators set at all.
Make the assignment of discriminators only walk macro arguments, and
then lazily assign discriminators for anything within a macro
expansion or in ill-formed code. This replaces the single global "next
autoclosure discriminator" scheme with a per-DeclContext scheme, that
is more reliable/robust, although it does mean that discriminators
of closures and locals within macro expansions are dependent on
ordering. That shouldn't matter, because these are local values.
Fixes rdar://108682196.
Suggesting the addition of an `@available` attribute on Linux and Windows is
inapprorpriate given that Swift is not ABI stable on those platforms.
Resolves rdar://107387133
* Factor out ASTContext plugin loading to newly introduced 'PluginLoader'
* Insert 'DependencyTracker' to 'PluginLoader'
* Add dependencies right before loading the plugins
rdar://104938481
For a `@Testable` import in program source, if a Swift interface dependency is discovered, and has an adjacent binary `.swiftmodule`, open up the module, and pull in its optional dependencies. If an optional dependency cannot be resolved on the filesystem, fail silently without raising a diagnostic.
The only state `getSwiftName` uses is its argument, and can be made a free function. Of
note the inverse operation, `getKnownFoundationEntity`, is also a free function. This
removes the requirement that callers have an `ASTContext` instance.
(cherry-picked from commit fb524c0b86)
`LoadedLibraryPlugin` is currently just a wrapper of `void` pointer from
`dlopen`. This will be convenient for abstracting platform specific
dynamic linrary handling.
Using a virutal output backend to capture all the outputs from
swift-frontend invocation. This allows redirecting and/or mirroring
compiler outputs to multiple location using different OutputBackend.
As an example usage for the virtual outputs, teach swift compiler to
check its output determinism by running the compiler invocation
twice and compare the hash of all its outputs.
Virtual output will be used to enable caching in the future.
* Argument to '-load-plugin-library' now must have a filename that's
'{libprefix}{modulename}.{sharedlibraryextension}'
* Load '-load-plugin-library' plugins are now lazily loaded in
'CompilerPluginLoadRequest'
* Remove ASTContext.LoadedSymbols cache because they are cached by
'ExternalMacroDefinitionRequest' anyway
* `-load-plugin-executable` format validation is now in
'ParseSearchPathArgs'
This executable is intended to be installed in the toolchain and act as
an executable compiler plugin just like other 'macro' plugins.
This plugin server has an optional method 'loadPluginLibrary' that
dynamically loads dylib plugins.
The compiler has a newly added option '-external-plugin-path'. This
option receives a pair of the plugin library search path (just like
'-plugin-path') and the corresponding "plugin server" path, separated
by '#'. i.e.
-external-plugin-path
<plugin library search path>#<plugin server executable path>
For exmaple, when there's a macro decl:
@freestanding(expression)
macro stringify<T>(T) -> (T, String) =
#externalMacro(module: "BasicMacro", type: "StringifyMacro")
The compiler look for 'libBasicMacro.dylib' in '-plugin-path' paths,
if not found, it falls back to '-external-plugin-path' and tries to find
'libBasicMacro.dylib' in them. If it's found, the "plugin server" path
is launched just like an executable plugin, then 'loadPluginLibrary'
method is invoked via IPC, which 'dlopen' the library path in the plugin
server. At the actual macro expansion, the mangled name for
'BasicMacro.StringifyMacro' is used to resolve the macro just like
dylib plugins in the compiler.
This is useful for
* Isolating the plugin process, so the plugin crashes doesn't result
the compiler crash
* Being able to use library plugins linked with other `swift-syntax`
versions
rdar://105104850
This modifies the ClangImporter to introduce an opaque placeholder
representation for forward declared Objective-C interfaces and
protocols when imported into Swift.
In the compiler, the new functionality is hidden behind a frontend
flag -enable-import-objc-forward-declarations, and is on by default
for language mode >6.
The feature is disabled entirely in LLDB expression evaluation / Swift
REPL, regardless of language version.
Previously enum AccessLimitKind was
added to distinguish access scopes b/t package and public while keeping
DeclContext null but it proved to be too limiting. This PR creates package specific entries for DeclContext and
ASTHierarchy. It create a new class PackageUnit that can be set as the parent DeclContext of ModuleDecl. This PR
contains addition of such entries but not the use of them; the actual use of them will be in the upcoming PRs.
Resolves rdar://106155600