This achieves the same as clang's `-fdebug-info-for-profiling`, which
emits DWARF discriminators to aid in narrowing-down which basic block
corresponds to a particular instruction address. This is particularly
useful for sampling-based profiling.
rdar://135443278
Add a setting to IRGenOptions and key off of it to emit yield_once_2
coroutines using either (1) the same code-path as yield_once coroutines
or (2) a new, not-yet implemented code-path.
Add flags to set the value in both directions. During bringup, by
default, use the existing caller-allocated ABI.
Adds sections `__TEXT,__swift_as_entry`, and `__TEXT,__swift_as_ret` that
contain relative pointers to async functlets modelling async function entries,
and function returns, respectively.
Emission of the sections can be trigger with the frontend option
`-Xfrontend -enable-async-frame-push-pop-metadata`.
This is done by:
* IRGen adding a `async_entry` function attribute to async functions.
* LLVM's coroutine splitting identifying continuation funclets that
model the return from an async function call by adding the function
attribute `async_ret`. (see #llvm-project/pull/9204)
* An LLVM pass that keys off these two function attribute and emits the
metadata into the above mention sections.
rdar://134460666
This fixes an issue where the debug locations for Swift traps were dropped in the produced PDB files, as they were pointing to line 0
I validated this on a sample project using WinDbgx, which can now correctly trap on the same line in multiple places
We don't currently support building resilient relative protocol witness tables.
One might want to build with relative witness tables but not need
resilient protocols. Allow for that scenario.
Add a test configuration to test library-evolution + fragile resilient
protocols + relative protocol witness tables.
To properly initialize the compiler instance on LLDB when debugging
embedded Swift programs, emit "-enable-embedded-swift" into the
DW_AT_APPLE_flags attribute of the compile unit.
To avoid synced PRs, add some temporary `Optional.h` includes so that
the move from `llvm::Optional` -> `std::optional` in LLVM can be merged.
Once the LLVM change is in we can merge the Swift move. Then we'll need
one final PR to fully remove `Optional.h` and `None.h` (this will likely
have to be a synced PR since optional references keep being added).
This patch adds a new flag sanitize-stable-abi to support linking
against the Sanitizers stable ABI added recently in compiler-rt. The
patch also passes extra options for the ASan pass when using this flag
to outline instrumentation code and remove version check.
rdar://112915278
Previously it was hardcoded to version 4 on all platforms.
This patch introduces a driver and frontend option -dwarf-version to configure it if needed.
This change adds the following options to allow for greater control over the compiler's autolinking directive use:
- '-disable-autolink-library': equivalent to an existing '-disable-autolink-framework', this option takes a library name as input and ensures the compiler does not produce an autolink directive '-l<library-name>'.
- '-disable-autolink-frameworks': a boolean disable flag which turns off insertion of autolinking directives for all imported frameworks (of the type '-framework <framework-name>')
- '-disable-all-autolinking': a boolean disable flag which turns off insertion of *any* autolinking directives.
Resolves rdar://100859983
To enable MCCAS, the following driver options have been added
-cas-backend: Enable MCCAS backend in swift, the option
-cache-compile-job must also be used.
-cas-backend-mode=native: Set the CAS Backend mode to emit an object
file after materializing it from the CAS.
-cas-backend-mode=casid: Emit a file with the CASID for the CAS that was
created.
-cas-backend-mode=verify: Verify that the object file created is
identical to the object file materialized from the CAS.
-cas-emit-casid-file: Emit a .casid file next to the object file when
CAS Backend is enabled.
Ensure that context descriptor pointers are signed in the runtime by putting the ptrauth_struct attribute on the types.
We use the new __builtin_ptrauth_struct_key/disc to conditionally apply ptrauth_struct to TrailingObjects based on the signing of the base type, so that pointers to TrailingObjects get signed when used with a context descriptor pointer.
We add new runtime entrypoints that take signed pointers where appropriate, and have the compiler emit calls to the new entrypoints when targeting a sufficiently new OS.
rdar://111480914
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
- Renames ExperimentalPlatformCCallingConvention to
PlatformCCallingConvention.
- Removes non-arm calling convention support as this feature is working
around a clang bug for some arm triples which we hope to see resolved.
- Removes misleading MetaVarName from platform-c-calling-convention
argument.
- Replaces other uses of LLVM::CallingConv::C with
IGM.getOptions().PlatformCCallingConvention().
Adds a new swift-frontend flag to allow users to choose which calling
convention is used to make c function calls. This hidden flag is called
`-experimental-platform-c-calling-convention`.
This behavior is needed to workaround rdar://109431863 (Swift-frontend
produces trapping llvm ir for non-trapping sil). The root cause of this
issue is that IRGen always emits c function calls with llvm's default C
calling convention. However clang may select a different (incompatible)
calling convention for the function, eventually resulting--via
InstCombine and SimplifyCFG--in a trap instead of the function call.
This failure mode is most readily seen with the triple
`armv7em-apple-none-macho` when attempting to call functions taking
struct arguments. Example unoptimized ir below:
```llvm-ir
call void @bar([4 x i32] %17, i32 2), !dbg !109
...
define internal arm_aapcs_vfpcc void @bar(
[4 x i32] %bar.coerce, i32 noundef %x)
```
In the future it would be better to use the clang importer or some other
tool to determine the calling convention for each function instead of
setting the calling convention frontend invocation wide.
Note: I don't know for sure whether or not clang should be explicitly
annotating these functions with a calling convention instead of
aliasing C to mean ARM_AAPCS_VFP for this particular combination of
`-target`, `-mfloat-abi`, and `-mcpu`.
When compiling with interop enabled, emit the C++ interop compiler flag
into the DW_AT_APPLE_flags, to make it so LLDB can accurately match the
C++ interop mode when initializing its compiler instance.
rdar://97610458
(cherry picked from commit b1dbb0a321)
Using a virutal output backend to capture all the outputs from
swift-frontend invocation. This allows redirecting and/or mirroring
compiler outputs to multiple location using different OutputBackend.
As an example usage for the virtual outputs, teach swift compiler to
check its output determinism by running the compiler invocation
twice and compare the hash of all its outputs.
Virtual output will be used to enable caching in the future.
rdar://105837040
* WIP: Store layout string in type metadata
* WIP: More cases working
* WIP: Layout strings almost working
* Add layout string pointer to struct metadata
* Fetch bytecode layout strings from metadata in runtime
* More efficient bytecode layout
* Add support for interpreted generics in layout strings
* Layout string instantiation, take and more
* Remove duplicate information from layout strings
* Include size of previous object in next objects offset to reduce number of increments at runtime
* Add support for existentials
* Build type layout strings with StructBuilder to support target sizes and metadata pointers
* Add support for resilient types
* Properly cache layout strings in compiler
* Generic resilient types working
* Non-generic resilient types working
* Instantiate resilient type in layout when possible
* Fix a few issues around alignment and signing
* Disable generics, fix static alignment
* Fix MultiPayloadEnum size when no extra tag is necessary
* Fixes after rebase
* Cleanup
* Fix most tests
* Fix objcImplementattion and non-Darwin builds
* Fix BytecodeLayouts on non-Darwin
* Fix Linux build
* Fix sizes in linux tests
* Sign layout string pointers
* Use nullptr instead of debug value