Rename `-enable-cas` to `-compile-cache-job` to align with clang option
names and promote that to a new driver only flag.
Few other additions to driver flag for caching behaviors:
* `-compile-cache-remarks`: now cache hit/miss remarks are guarded behind
this flag
* `-compile-cache-skip`: skip replaying from the cache. Useful as a
debugging tool to do the compilation using CAS inputs even the output
is a hit from the cache.
Teach swift dependency scanner to use CAS to capture the full dependencies for a build and construct build commands with immutable inputs from CAS.
This allows swift compilation caching using CAS.
This will mean that '-disable-implicit-swift-modules' also automatically implies two things:
1. Clang modules must also be explicit, and the importer's clang instance will get '-fno-implicit-modules' and '-fno-implicit-module-maps'
2. The importer's clang instance will no longer get a '-fmodules-cache-path=', since it is not needed in explicit builds
Teach swift compiler about CAS to allow compiler caching in the future.
1) Add flags to initiate CAS inside swift-frontend
2) Teach swift to compile using a CAS file system.
Using a virutal output backend to capture all the outputs from
swift-frontend invocation. This allows redirecting and/or mirroring
compiler outputs to multiple location using different OutputBackend.
As an example usage for the virtual outputs, teach swift compiler to
check its output determinism by running the compiler invocation
twice and compare the hash of all its outputs.
Virtual output will be used to enable caching in the future.
The frontend option '-clang-header-expose-module' allows the user to specify that APIs from an imported module have been exposed in another generated header, and thus APIs that depend on them can be safely exposed in the current generated header.
This mode allows the user to fallback to the old behavior that required @expose annotations, while still having standard library interfaces emitted in one header
Introduce a new flag `-export-as` to specify a name used to identify the
target module in swiftinterfaces. This provides an analoguous feature
for Swift module as Clang's `export_as` feature.
In practice it should be used when a lower level module `MyKitCore` is
desired to be shown publicly as a downstream module `MyKit`. This should
be used in conjunction with `@_exported import MyKitCore` from `MyKit`
that allows clients to refer to all services as being part of `MyKit`,
while the new `-export-as MyKit` from `MyKitCore` will ensure that the
clients swiftinterfaces also use the `MyKit` name for all services.
In the current implementation, the export-as name is used in the
module's clients and not in the declarer's swiftinterface (e.g.
`MyKitCore`'s swiftinterface still uses the `MyKitCore` module name).
This way the module swiftinterface can be verified. In the future, we
may want a similar behavior for other modules in between `MyKitCore` and
`MyKit` as verifying a swiftinterface referencing `MyKit` without it
being imported would fail.
rdar://103888618
Introduces a concept of a dependency scanning action context hash, which is used to select an instance of a global dependency scanning cache which gets re-used across dependency scanning actions.
Currently headers produced with `-emit-objc-header` /
`-emit-objc-header-path` produce headers that include modular imports.
If the consumer wishes to operate without modules enabled, these headers
cannot be used. This patch introduces a new flag
(`-emit-clang-header-nonmodular-includes`) that when enabled
attempts to argument each modular import included in such a header with
a set of equivalent textual imports.
Currently headers produced with `-emit-objc-header` /
`-emit-objc-header-path` produce headers that include modular imports.
If the consumer wishes to operate without modules enabled, these headers
cannot be used. This patch introduces a new flag
(`-emit-clang-header-nonmodular-includes`) that when enabled
attempts to argument each modular import included in such a header with
a set of equivalent textual imports.
ABI descriptors should always be emitted as sidecars for library-evolution-enabled modules.
However, generating these files requires traversing the entire module (like indexing), which may
hit additional deserialization issues. To unblock builds, this patch introduces a flag to skip
the traversing logic so that we emit an empty ABI descriptor file. The empty file serves as
a placeholder so that build system doesn't need to know the details.
Add new `-print-ast-decl` frontend option for only printing declarations,
to match existing behavior.
Some tests want to print the AST, but don't care about expressions.
The existing `-print-ast` option now prints function bodies and expressions.
Not all expressions are printed yet, but most common ones are.
We noticed some Swift clients rely on the serialized search paths in the module to
find dependencies and droping these paths altogether can lead to build failures like
rdar://85840921.
This change teaches the serialization to obfuscate the search paths and the deserialization
to recover them. This allows clients to keep accessing these paths without exposing
them when shipping the module to other users.
We've recently added the -experimental-hermetic-seal-at-link compiler flag,
which turns on aggressive dead-stripping optimizations and assumes that library
code can be optimized against client code because all users of the library
code/types are present at link/LTO time. This means that any module that's
built with -experimental-hermetic-seal-at-link requires all clients of this
module to also use -experimental-hermetic-seal-at-link. This PR enforces that
by storing a bit in the serialized module, and checking the bit when importing
modules.
Ideally, module interface verification should fail the build when fatal error occurs when
type checking emitted module interfaces. However, we found it's hard to stage this phase in
because the ideal case requires all Swift adopters to have valid interfaces. This new front-end flag allows
driver to downgrade all interface verification errors to warnings as an intermediate step.
This additional supplement output should capture semantic info the compiler has
captured while building a Swift module. Similar to the source info file, the content of
the semantic info file should only be consumed by local tooling written in Swift.
This commit adds a new frontend flag that applies debug path prefixing to the
paths serialized in swiftmodule files. This makes it possible to use swiftmodule
files that have been built on different machines by applying the inverse map
when debugging, in a similar fashion to source path prefixing.
The inverse mapping in LLDB will be handled in a follow up PR.
Second pass at #39138
Tests updated to handle windows path separators.
This reverts commit f5aa95b381.
This commit adds the `-prefix-serialized-debugging-options` flag,
which is used to apply the debug prefix map to serialized debugging
options embedded in the swiftmodule files.