Since the two ExtInfos share a common ClangTypeInfo, and C++ doesn't let us
forward declare nested classes, we need to hoist out AnyFunctionType::ExtInfo
and SILFunctionType::ExtInfo to the top-level.
We also add some convenience APIs on (AST|SIL)ExtInfo for frequently used
withXYZ methods. Note that all non-default construction still goes through the
builder's build() method.
We do not add any checks for invariants here; those will be added later.
Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`
There is no need to build a fake RequirementRepr if we can directly represent a the requested AnyObject conformance constraint in the generated generic signature.
This removes the final user of the TypeLoc-bearing constructors of RequirementReprs.
The following upstream commit removed the ScalableVecArgument:
https://reviews.llvm.org/D80107
I've remove that case from IntrinsicTypeDecoder::decodeImmediate()
The aforementioned patch also describes vector widths in terms of
ElementCounts, and not unsigned ints. I've updated an access to the
vector width to make use of the ElementCount representation via access
of the Min member.
Add a private scratch context to the ASTContext and allow IntrinsicInfo sole access to it so it can allocate attributes into it. This removes the final dependency on the global context.
Delete all of the formalism and infrastructure around maintaining our own copy of the global context. The final frontier is the Builtins, which need to lookup intrinsics in a given scratch context and convert them into the appropriate Swift annotations and types. As these utilities have wormed their way through the compiler, I have decided to leave this alone for now.
Define type signatures and SILGen for the following builtins:
```
/// Applies the {jvp|vjp} of `f` to `arg1`, ..., `argN`.
func applyDerivative_arityN_{jvp|vjp}(f, arg1, ..., argN) -> jvp/vjp return type
/// Applies the transpose of `f` to `arg`.
func applyTranspose_arityN(f, arg) -> transpose return type
/// Makes a differentiable function from the given `original`, `jvp`, and
/// `vjp` functions.
func differentiableFunction_arityN(original, jvp, vjp)
/// Makes a linear function from the given `original` and `transpose` functions.
func linearFunction_arityN(original, transpose)
```
Add SILGen FileCheck tests for all builtins.
(BaseT, @inout @unowned(unsafe) T) -> @guaranteed T
The reason for the weird signature is that currently the Builtin infrastructure
does not handle results well. Also, note that we are not actually performing a
call here. We are SILGening directly so we can create a guaranteed result.
The intended semantics is that one passes in a base value that guarantees the
lifetime of the unowned(unsafe) value. The builtin then:
1. Borrows the base.
2. Loads the trivial unowned (unsafe), converts that value to a guaranteed ref
after unsafely unwrapping the optional.
3. Uses mark dependence to tie the lifetimes of the guaranteed base to the
guaranteed ref.
I also updated my small UnsafeValue.swift test to make sure we get the codegen
we expect.
The signature is:
(T, @inout @unowned(unsafe) Optional<T>) -> ()
The reason for the weird signature is that currently the Builtin infrastructure
does not handle results well.
The semantics of this builtin is that it enables one to store the first argument
into an unowned unsafe address without any reference counting operations. It
does this just by SILGening the relevant code. The optimizer chews through this
code well, so we get the expected behavior.
I also included a small proof of concept to validate that this builtin works as
expected.
Since getSpecifier() now kicks off a request instead of always
returning what was previously set, we can't pass a ParamSpecifier
to the ParamDecl constructor anymore. Instead, callers either
call setSpecifier() if the ParamDecl is synthesized, or they
rely on the request, which can compute the specifier in three
specific cases:
- Ordinary parsed parameters get their specifier from the TypeRepr.
- The 'self' parameter's specifier is based on the self access kind.
- Accessor parameters are either the 'newValue' parameter of a
setter, or a cloned subscript parameter.
For closure parameters with inferred types, we still end up
calling setSpecifier() twice, once to set the initial defalut
value and a second time when applying the solution in the
case that we inferred an 'inout' specifier. In practice this
should not be a big problem because expression type checking
walks the AST in a pre-determined order anyway.
Structurally prevent a number of common anti-patterns involving generic
signatures by separating the interface into GenericSignature and the
implementation into GenericSignatureBase. In particular, this allows
the comparison operators to be deleted which forces callers to
canonicalize the signature or ask to compare pointers explicitly.
This removes it from the AST and largely replaces it with AnyObject
at the SIL and IRGen layers. Some notes:
- Reflection still uses the notion of "unknown object" to mean an
object with unknown refcounting. There's no real reason to make
this different from AnyObject (an existential containing a
single object with unknown refcounting), but this way nothing
changes for clients of Reflection, and it's consistent with how
native objects are represented.
- The value witness table and reflection descriptor for AnyObject
use the mangling "BO" instead of "yXl".
- The demangler and remangler continue to support "BO" because it's
still in use as a type encoding, even if it's not an AST-level
Type anymore.
- Type-based alias analysis for Builtin.UnknownObject was incorrect,
so it's a good thing we weren't using it.
- Same with enum layout. (This one assumed UnknownObject never
referred to an Objective-C tagged pointer. That certainly wasn't how
we were using it!)