This library uses GenericMetadataBuilder with a ReaderWriter that can read data and resolve pointers from MachO files, and emit a JSON representation of a dylib containing the built metadata.
We use LLVM's binary file readers to parse the MachO files and resolve fixups so we can follow pointers. This code is somewhat MachO specific, but could be generalized to other formats that LLVM supports.
rdar://116592577
Yet more preprocessor metaprogramming to eliminate per-macro-role boilerplate
in the compiler. This time, focused on mangling, demangling, and remangling
of the accessor macro roles.
Using symbolic references instead of a text based mangling avoids the
expensive type descriptor scan when objective c protocols are requested.
rdar://111536582
The demangler already has an error mechanism to report if demangling
failed. Add null pointer checks before every access in
Demangle::getUnspecialized, and return an error if the child doesn't
exist.
rdar://110141007
Macro expansions are currently written to disk using the mangled name of
the macro. Do not use operators that only differ in case-sensitivity to
avoid issues on case-insensitive filesystems.
Resolves rdar://109371653.
The mangling of attached macro expansions based on the declaration to
which they are attached requires semantic information (specifically,
the interface type of that declaration) that caused cyclic
dependencies during type checking. Replace the mangling with a
less-complete mangling that only requires syntactic information from
the declaration, i.e., the name of the declaration to which the macro
was attached.
This eliminates reference cycles that occur with attached macros that
produce arbitrary names.
Add a private discriminator to the mangling of an outermost-private `MacroExpansionDecl` so that declaration macros in different files won't have colliding macro expansion buffer names.
rdar://107462515
* [Executors][Distributed] custom executors for distributed actor
* harden ordering guarantees of synthesised fields
* the issue was that a non-default actor must implement the is remote check differently
* NonDefaultDistributedActor to complete support and remote flag handling
* invoke nonDefaultDistributedActorInitialize when necessary in SILGen
* refactor inline assertion into method
* cleanup
* [Executors][Distributed] Update module version for NonDefaultDistributedActor
* Minor docs cleanup
* we solved those fixme's
* add mangling test for non-def-dist-actor
Extend the name mangling scheme for macro expansions to cover attached
macros, and use that scheme for the names of macro expansions buffers.
Finishes rdar://104038303, stabilizing file/buffer names for macro
expansion buffers.
Use the name mangling scheme we've devised for macro expansions to
back the implementation of the macro expansion context's
`getUniqueName` operation. This way, we guarantee that the names
provided by macro expansions don't conflict, as well as making them
demangleable so we can determine what introduced the names.
- SILPackType carries whether the elements are stored directly
in the pack, which we're not currently using in the lowering,
but it's probably something we'll want in the final ABI.
Having this also makes it clear that we're doing the right
thing with substitution and element lowering. I also toyed
with making this a scalar type, which made it necessary in
various places, although eventually I pulled back to the
design where we always use packs as addresses.
- Pack boundaries are a core ABI concept, so the lowering has
to wrap parameter pack expansions up as packs. There are huge
unimplemented holes here where the abstraction pattern will
need to tell us how many elements to gather into the pack,
but a naive approach is good enough to get things off the
ground.
- Pack conventions are related to the existing parameter and
result conventions, but they're different on enough grounds
that they deserve to be separated.
When a declaration has a structural opaque return type like:
func foo() -> Bar<some P>
then to mangle that return type `Bar<some P>`, we have to mangle the `some P`
part by referencing its defining declaration `foo()`, which in turn includes
its return type `Bar<some P>` again (this time using a special mangling for
`some P` that prevents infinite recursion). Since we mangle `Bar<some P>`
once as part of mangling the declaration, and we register substitutions for
bound generic types when they're complete, we end up registering the
substitution for `Bar<some P>` twice, once as the return type of the
declaration name, and again as the actual type. This would be fine, except
that the mangler doesn't check for key collisions, and it picks
substitution indexes based on the number of entries in its hash map, so
the duplicated substitution ends up corrupting the substitution sequence,
causing the mangler to produce an invalid mangled name.
Fixing that exposes us to another problem in the remangler: the AST
mangler keys substitutions by type identity, but the remangler
uses the value of the demangled nodes to recognize substitutions.
The mangling for `Bar<current declaration's opaque return type>` can
appear multiple times in a demangled tree, but referring to different
declarations' opaque return types, and the remangler would reconstruct
an incorrect mangled name when this happens. To avoid this, change the
way the demangler represents `OpaqueReturnType` nodes so that they
contain a backreference to the declaration they represent, so that
substitutions involving different declarations' opaque return types
don't get confused.
* [SILOptimizer] Add prespecialization for arbitray reference types
* Fix benchmark Package.swift
* Move SimpleArray to utils
* Fix multiple indirect result case
* Remove leftover code from previous attempt
* Fix test after rebase
* Move code to compute type replacements to SpecializedFunction
* Fix ownership when OSSA is enabled
* Fixes after rebase
* Changes after rebasing
* Add feature flag for layout pre-specialization
* Fix pre_specialize-macos.swift
* Add compiler flag to benchmark build
* Fix benchmark SwiftPM flags
For performance annotations we need the generic specializer to trop non-generic metatype argumentrs
(which we don't do in general). For this we need a separate mangling.
Upgrade the old mangling from a list of argument types to a
list of requiremnets. For now, only same-type requirements
may actually be mangled since those are all that are available
to the surface language.
Reconstruction of existential types now consists of demangling (a list of)
base protocol(s), decoding the constraints, and converting the same-type
constraints back into a list of arguments.
rdar://96088707
The layout of constant static arrays differs from non-constant static arrays.
Therefore use a different mangling to get symbol mismatches if for some reason two modules don't agree on which version a static array is.
I wrote out this whole analysis of why different existential types
might have the same logical content, and then I turned around and
immediately uniqued existential shapes purely by logical content
rather than the (generalized) formal type. Oh well. At least it's
not too late to make ABI changes like this.
We now store a reference to a mangling of the generalized formal
type directly in the shape. This type alone is sufficient to unique
the shape:
- By the nature of the generalization algorithm, every type parameter
in the generalization signature should be mentioned in the
generalized formal type in a deterministic order.
- By the nature of the generalization algorithm, every other
requirement in the generalization signature should be implied
by the positions in which generalization type parameters appear
(e.g. because the formal type is C<T> & P, where C constrains
its type parameter for well-formedness).
- The requirement signature and type expression are extracted from
the existential type.
As a result, we no longer rely on computing a unique hash at
compile time.
Storing this separately from the requirement signature potentially
allows runtimes with general shape support to work with future
extensions to existential types even if they cannot demangle the
generalized formal type.
Storing the generalized formal type also allows us to easily and
reliably extract the formal type of the existential. Otherwise,
it's quite a heroic endeavor to match requirements back up with
primary associated types. Doing so would also only allows us to
extract *some* matching formal type, not necessarily the *right*
formal type. So there's some good synergy here.