PublicCMOSymbols stores symbols which are made public by cross-module-optimizations.
Those symbols are primarily stored in SILModule and eventually used by TBD generation and validation.
Instead of checking that the stdlib can be loaded in a variety of places, check it when setting up the compiler instance. This required a couple more checks to avoid loading the stdlib in cases where it’s not needed.
To be able to differentiate stdlib loading failures from other setup errors, make `CompilerInstance::setup` return an error message on failure via an inout parameter. Consume that error on the call side, replacing a previous, more generic error message, adding error handling where appropriate or ignoring the error message, depending on the context.
- Frontend: Implicitly import `_StringProcessing` when frontend flag `-enable-experimental-string-processing` is set.
- Type checker: Set a regex literal expression's type as `_StringProcessing.Regex<(Substring, DynamicCaptures)>`. `(Substring, DynamicCaptures)` is a temporary `Match` type that will help get us to an end-to-end working system. This will be replaced by actual type inference based a regex's pattern in a follow-up patch (soon).
- SILGen: Lower a regex literal expression to a call to `_StringProcessing.Regex.init(_regexString:)`.
- String processing runtime: Add `Regex`, `DynamicCaptures` (matching actual APIs in apple/swift-experimental-string-processing), and `Regex(_regexString:)`.
Upcoming:
- Build `_MatchingEngine` and `_StringProcessing` modules with sources from apple/swift-experimental-string-processing.
- Replace `DynamicCaptures` with inferred capture types.
We noticed some Swift clients rely on the serialized search paths in the module to
find dependencies and droping these paths altogether can lead to build failures like
rdar://85840921.
This change teaches the serialization to obfuscate the search paths and the deserialization
to recover them. This allows clients to keep accessing these paths without exposing
them when shipping the module to other users.
We've recently added the -experimental-hermetic-seal-at-link compiler flag,
which turns on aggressive dead-stripping optimizations and assumes that library
code can be optimized against client code because all users of the library
code/types are present at link/LTO time. This means that any module that's
built with -experimental-hermetic-seal-at-link requires all clients of this
module to also use -experimental-hermetic-seal-at-link. This PR enforces that
by storing a bit in the serialized module, and checking the bit when importing
modules.
This enables the use of `-explicit-swift-module-map-file` for some
modules in the build, while still loading implicit modules as before.
This is useful to improve the performance of builds with many modules to
avoid searching many different directories pass with `-I`. Previously
VFS overlays could be used for this use case as well, but it seems
valuable to unify on the same infrastructure used for explicit module
builds.
This commit adds a new frontend flag that applies debug path prefixing to the
paths serialized in swiftmodule files. This makes it possible to use swiftmodule
files that have been built on different machines by applying the inverse map
when debugging, in a similar fashion to source path prefixing.
The inverse mapping in LLDB will be handled in a follow up PR.
Second pass at #39138
Tests updated to handle windows path separators.
This reverts commit f5aa95b381.
* Fix unnecessary one-time recompile of stdlib with -enable-ossa-flag
This includes a bit in the module format to represent if the module was
compiled with -enable-ossa-modules flag. When compiling a client module
with -enable-ossa-modules flag, all dependent modules are checked for this bit,
if not on, recompilation is triggered with -enable-ossa-modules.
* Updated tests
[NFC] Add a module alias map and a lookup func to ASTContext.
Add a getter for the actual module name in ModuleDecl if a module alias is used.
rdar://83682112
This commit adds the `-prefix-serialized-debugging-options` flag,
which is used to apply the debug prefix map to serialized debugging
options embedded in the swiftmodule files.
Serialize the canonical name of the SDK used when building a swiftmodule
file and use it to ensure that the swiftmodule file is loaded only with
the same SDK. The SDK name must be passed down from the frontend.
This will report unsupported configurations like:
- Installing roots between incompatible SDKs without deleting the
swiftmodule files.
- Having multiple targets in the same project using different SDKs.
- Loading a swiftmodule created with a newer SDK (and stdlib) with an
older SDK.
All of these lead to hard to investigate deserialization failures and
this change should detect them early, before reaching a deserialization
failure.
rdar://78048939
Rework Sendable checking to be completely based on "missing"
conformances, so that we can individually diagnose missing Sendable
conformances based on both the module in which the conformance check
happened as well as where the type was declared. The basic rules here
are to only diagnose if either the module where the non-Sendable type
was declared or the module where it was checked was compiled with a
mode that consistently diagnoses `Sendable`, either by virtue of
being Swift 6 or because `-warn-concurrency` was provided on the
command line. And have that diagnostic be an error in Swift 6 or
warning in Swift 5.x.
There is much tuning to be done here.
diagnostic behavior to a warning until the specified language version.
This helper can be used to stage in fixes for stricter diagnostics
as warnings until the next major language version.
Foundation imports CoreFoundation with `@_implementationOnly`,
so CoreFoundation's modulemap won't be read, and the dependent libraries
of CoreFoundation will not be automatically linked when using static
linking.
For example, CoreFoundation depends on libicui18n and it's modulemap has
`link "icui18n"` statement. If Foundation imports CoreFoundation with
`@_implementationOnly` as a private dependency, the toolchain doesn't have
CoreFoundation's modulemap and Foundation's swiftmodule doesn't import
CoreFoundation. So the swiftc can't know that libicui18n is required.
This new option will add LINK_LIBRARY entry in swiftmodule to
specify dependent libraries (in the example case, Foundation's
swiftmodule should have LINK_LIBRARY entry of libicui18n)
See also: [Autolinking behavior of @_implementationOnly with static linking](https://forums.swift.org/t/autolinking-behavior-of-implementationonly-with-static-linking/44393)