rdar://129359370
Second part of direct error support. This implements direct errors for async functions. Instead of always returning typed errors indirectly, we are returning them directly when possible.
Conflicts:
- `test/Interop/Cxx/class/method/methods-this-and-indirect-return-irgen-itanium.swift`
previously fixed on rebranch, now fixed on main (slightly differently).
This corresponds to the parameter-passing convention of the Itanium C++
ABI, in which the argument is passed indirectly and possibly modified,
but not destroyed, by the callee.
@in_cxx is handled the same way as @in in callers and @in_guaranteed in
callees. OwnershipModelEliminator emits the call to destroy_addr that is
needed to destroy the argument in the caller.
rdar://122707697
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
If a foreign reference type has a custom retain function, emit a call to
it instead of emitting a call to objc_retainAutoreleasedReturnValue.
rdar://117353222
Call `swift_clearSensitive` after destroying or taking "sensitive" struct types.
Also, support calling C-functions with "sensitive" parameters or return values. In SIL, sensitive types are address-only and so are sensitive parameters/return values.
Though, (small) sensitive C-structs are passed directly to/from C-functions. We need re-abstract such parameter and return values for C-functions.
* Allow normal function results of @yield_once coroutines
* Address review comments
* Workaround LLVM coroutine codegen problem: it assumes that unwind path never returns.
This is not true to Swift coroutines as unwind path should end with error result.
We've been building up this exponential explosion of task-creation
builtins because it's not currently possible to overload builtins.
As long as all of the operands are scalar, though, it's pretty easy
to peephole optional injections in IRGen, which means we can at
least just use a single builtin in SIL and then break it apart in
IRGen to decide which options to set.
I also eliminated the metadata argument, which can easily be recreated
from the substitutions. I also added proper verification for the builtin,
which required (1) getting `@Sendable` right more consistently and (2)
updating a bunch of tests checking for things that are not actually
valid, like passing a function that returns an Int directly.
When ObjC interop is not enabled, we shouldn't be emitting calls to
`objc_retainAutoreleasedReturnValue()` as that function might not exist.
Call `swift_retain()` instead, to balance the `swift_release()` of the
returned value.
Fixes#47846, #45359.
rdar://23335318
Fix a bug in expandExternalSignatureTypes where it wasn't annotating a function call parameter type with sret when the result was being returned indirectly.
The bug was causing calls to ObjC methods that return their results indirectly to crash.
Additionally, fix the return type for C++ constructors computed in expandExternalSignatureTypes. Previously, the return type was always void even on targets that require constructors to return this (e.g., Apple arm64), which was causing C++ constructor thunks to be emitted needlessly.
Resolves rdar://121618707
We need to only generate references to `_swift_exceptionPersonality`
if we're building for a new enough runtime. The previous code was
good on Darwin, but would have resulted in build problems on Linux.
rdar://120952971
The previous approach was effectively to catch the exception and then
run a trap instruction. That has the unfortunate feature that we end
up with a crash at the catch site, not at the throw site, which leaves
us with very little information about which exception was thrown or
where from.
(Strictly we do have the exception pointer and could obtain exception
information, but it still won't tell us what threw it.)
Instead of that, set a personality function for Swift functions that
call potentially throwing code, and have that personality function
trap the exception during phase 1 (i.e. *before* the original stack
has been unwound).
rdar://120952971