Although the declaration of macros doesn't appear in Swift source code
that uses macros, they still operate as declarations within the
language. Rework `Macro` as `MacroDecl`, a generic value declaration,
which appropriate models its place in the language.
The vast majority of this change is in extending all of the various
switches on declaration kinds to account for macros.
Introduce `MacroExpansionExpr` and `MacroExpansionDecl` and plumb it through. Parse them in roughly the same way we parse `ObjectLiteralExpr`.
The syntax is gated under `-enable-experimental-feature Macros`.
This lifts the requirement for the user to explicitly add `import Cxx` in Swift code that relies on protocols from the `Cxx` module, such as `CxxSequence`.
This commit begins to generate correct metadata for @_objcImplementation extensions:
• Swift-specific metadata and symbols are not generated.
• For main-class @_objcImpls, we visit the class to emit metadata, but visit the extension’s members.
• Includes both IR tests and executable tests, including coverage of same-module @objc subclasses, different-module @objc subclasses, and clang subclasses.
The test cases do not yet cover stored properties.
In preparation for moving to llvm's opaque pointer representation
replace getPointerElementType and CreateCall/CreateLoad/Store uses that
dependent on the address operand's pointer element type.
This means an `Address` carries the element type and we use
`FunctionPointer` in more places or read the function type off the
`llvm::Function`.
The _swift5_entry section contains a relative pointer to the entry-point
function (spelled variously _main and @main depending on context).
Support differentiating whether that entry point originates from a type
annotated @main or something else (i.e. main.swift) via a second
relative-pointer-sized field. For now, that field is just a bit: 1 if
there is a type annotated @main, 0 otherwise. In the future, that field
could be a relative pointer to the type descriptor for the type.
Modify IRGen to emit “anonymous” string constants with names of the form `@.str.<len>.<contents>` (with a special mangling for internal `\0` characters). This makes it much easier to write IRGen tests that check for the contents of strings, because matching the constant name also implies that the constant has the expected content.
We previously eagerly emitted such functions to
ensure that their name data is emitted through the
profiler increment. Now that are able to emit the
profile name data separately, this is unnecessary,
and we can avoid emitting their definitions.
It decides which functions need stack protection.
It sets the `needStackProtection` flags on all function which contain stack-allocated values for which an buffer overflow could occur.
Within safe swift code there shouldn't be any buffer overflows.
But if the address of a stack variable is converted to an unsafe pointer, it's not in the control of the compiler anymore.
This means, if there is any `address_to_pointer` instruction for an `alloc_stack`, such a function is marked for stack protection.
Another case is `index_addr` for non-tail allocated memory.
This pattern appears if pointer arithmetic is done with unsafe pointers in swift code.
If the origin of an unsafe pointer can only be tracked to a function argument, the pass tries to find the root stack allocation for such an argument by doing an inter-procedural analysis.
If this is not possible, the fallback is to move the argument into a temporary `alloc_stack` and do the unsafe pointer operations on the temporary.
rdar://93677524
Extended existential type shapes can trigger this by introducing
more entities (and thus causing GlobalVars to be rehashed) during
the lazy-emission callback.
Fixes rdar://98995607
Include the parent `ModuleDecl` when serializing a `SILFunction` so that it is available on deserialized functions even though the full `DeclContext` is not present. With the parent module always available we can reliably compute whether the `SILFunction` comes from a module that was imported `@_weakLinked`.
Serialize the `DeclContext` member of `SILFunction` so that it can be used to look up the module that a function belongs to in order to compute weak import status.
Resolves rdar://98521248
Trivial conflict caused by the line above the
`IGM.constructInitialFnAttributes` change in `lib/IRGen/GenDecl.cpp`
having an extra argument passed in rebranch (due to the new LLVM API).
Adds frontend option -enable-stack-protector to enable emission of a
stack protector.
Disabled by default.
When enabled enables LLVM's strong stack protection mode.
rdar://93677524
Put pointers to class_ro_t referenced from generic class patterns in a section __swift_rodatas such that they are discoverable by the linker.
The linker can then make the method lists contained in the class_ro_t relative like it can for objective c class metadata from non-generic swift classes.
rdar://66634459
LLVM's O0 pipeline has decided to run GlobalDCE (if there are coro intrinsics present in the module).
Add definitions to compiler.used to counter act that.
So far, static arrays had to be put into a writable section, because the isa pointer and the (immortal) ref count field were initialized dynamically at the first use of such an array.
But with a new runtime library, which exports the symbols for the (immortal) ref count field and the isa pointer, it's possible to put the whole array into a read-only section. I.e. make it a constant global.
rdar://94185998
This reverts the revert commit df353ff3c0.
Also, I added a frontend option to disable this optimization: `-disable-readonly-static-objects`
So far, static arrays had to be put into a writable section, because the isa pointer and the (immortal) ref count field were initialized dynamically at the first use of such an array.
But with a new runtime library, which exports the symbols for the (immortal) ref count field and the isa pointer, it's possible to put the whole array into a read-only section. I.e. make it a constant global.
rdar://94185998
The `AttrBuilder` API was changed in llvm/llvm-project
d2cc6c2d0c2f8a6e272110416a3fd579ed5a3ac1 to now take a `LLVMContext &`
as part of its constructor. Update uses to pass one in.
`PointerType::getElementType` has been removed entirely as part of the
opaque pointers migration. Update to `getPointerElementType` for now
until we've also migrated.