The main change here is to associate a witness table with a `ProtocolConformance` instead of a `RootProtocolConformance`.
A `ProtocolConformance` is the base class and can be a `RootProtocolConformance` or a `SpecializedProtocolConformance`.
The generality of the `AvailabilityContext` name made it seem like it
encapsulates more than it does. Really it just augments `VersionRange` with
additional set algebra operations that are useful for availability
computations. The `AvailabilityContext` name should be reserved for something
pulls together more than just a single version.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
Decls with a package access level are currently set to public SIL
linkages. This limits the ability to have more fine-grained control
and optimize around resilience and serialization.
This PR introduces a separate SIL linkage and FormalLinkage for
package decls, pipes them down to IRGen, and updates linkage checks
at call sites to include package linkage.
Resolves rdar://121409846
Currently only arrays can be put into a read-only data section.
"Regular" classes have dynamically initialized metadata, which needs to be stored into the isa field at runtime.
Partially address the incorrect handling for the `#dsohandle` on
Windows.
We were previously emitting a local definition for this external
constant, and worse yet, not marking the definition for COMDAT. It is
unclear what definition would win ultimately (implementation defined),
as we had a definition as well as the linker synthesized value. We can
change the SIL linkage for this type to `DefaultForDeclaration` which
will give it `available_externally` and default visibility and storage
which is closer to what we desire. However, because we do not track the
LLVM variables and apply heuristics for lowering the
`SILGlobalVariable`, we would attribute it with imported DLL Storage.
This would then cause us to fail at link time (amusingly enough link.exe
will report a LNK1000). Special case the variable and track that we are
targeting a windows environment in the `UniversalLinkageInfo` so that we
do not special case this on other platforms.
This also has the nice side effect of allowing us to remove the special
case in the TBD handling.
Fixes: #64741
For each decl that needs a `#_hasSymbol()` query function, emit the corresponding helper function body during IRGen. Use `IRSymbolVisitor` to collect linkable symbols associated with the decl and return true from the helper function if the address of every associated symbol is non-null.
Resolves rdar://101884587
In preparation for moving to llvm's opaque pointer representation
replace getPointerElementType and CreateCall/CreateLoad/Store uses that
dependent on the address operand's pointer element type.
This means an `Address` carries the element type and we use
`FunctionPointer` in more places or read the function type off the
`llvm::Function`.
Include the parent `ModuleDecl` when serializing a `SILFunction` so that it is available on deserialized functions even though the full `DeclContext` is not present. With the parent module always available we can reliably compute whether the `SILFunction` comes from a module that was imported `@_weakLinked`.
Serialize the `DeclContext` member of `SILFunction` so that it can be used to look up the module that a function belongs to in order to compute weak import status.
Resolves rdar://98521248
Previously, only the associated requirement was considered when deciding whether to weakly link an associated conformance descriptor. This lead to unexpected strong linkage for some symbols, interfering with back deployment when integrating with some frameworks.
Resolves rdar://96974850
If opaque result type has availability conditions and is associated with
an `@_alwaysInlineIntoClient` declaration, its metadata descriptor has to
be emitted into a client module because the body of the inlined function
depends on it for the runtime information about the underlying type.
Resolves: rdar://82791712
When determining the linkage of protocol witness table lazy access
functions and their cache variables, look through opaque types to find
the underlying decls.
rdar://96194366
So far, static arrays had to be put into a writable section, because the isa pointer and the (immortal) ref count field were initialized dynamically at the first use of such an array.
But with a new runtime library, which exports the symbols for the (immortal) ref count field and the isa pointer, it's possible to put the whole array into a read-only section. I.e. make it a constant global.
rdar://94185998
This reverts the revert commit df353ff3c0.
Also, I added a frontend option to disable this optimization: `-disable-readonly-static-objects`
So far, static arrays had to be put into a writable section, because the isa pointer and the (immortal) ref count field were initialized dynamically at the first use of such an array.
But with a new runtime library, which exports the symbols for the (immortal) ref count field and the isa pointer, it's possible to put the whole array into a read-only section. I.e. make it a constant global.
rdar://94185998
I wrote out this whole analysis of why different existential types
might have the same logical content, and then I turned around and
immediately uniqued existential shapes purely by logical content
rather than the (generalized) formal type. Oh well. At least it's
not too late to make ABI changes like this.
We now store a reference to a mangling of the generalized formal
type directly in the shape. This type alone is sufficient to unique
the shape:
- By the nature of the generalization algorithm, every type parameter
in the generalization signature should be mentioned in the
generalized formal type in a deterministic order.
- By the nature of the generalization algorithm, every other
requirement in the generalization signature should be implied
by the positions in which generalization type parameters appear
(e.g. because the formal type is C<T> & P, where C constrains
its type parameter for well-formedness).
- The requirement signature and type expression are extracted from
the existential type.
As a result, we no longer rely on computing a unique hash at
compile time.
Storing this separately from the requirement signature potentially
allows runtimes with general shape support to work with future
extensions to existential types even if they cannot demangle the
generalized formal type.
Storing the generalized formal type also allows us to easily and
reliably extract the formal type of the existential. Otherwise,
it's quite a heroic endeavor to match requirements back up with
primary associated types. Doing so would also only allows us to
extract *some* matching formal type, not necessarily the *right*
formal type. So there's some good synergy here.
This pipes the `-static` flag when building a static library into IRGen.
This should have no impact on non-Windows targets as the usage of the
information simply removes the `dllexport` attribute on the generated
interfaces. This ensures that a library built with `-static` will not
re-export its interfaces from the consumer. This is important to ensure
that the consumer does not vend the API surface when it statically links
a library. In conjunction with the removal of the force load symbol,
this allows the generation of static libraries which may be linked
against on Windows. However, a subsequent change is needed to ensure
that the consumer does not mark the symbol as being imported from a
foreign module (i.e. `dllimport`).