(Headers first)
It has been generally agreed that we need to do this reorg, and now
seems like the perfect time. Some major pass reorganization is in the
works.
This does not have to be the final word on the matter. The consensus
among those working on the code is that it's much better than what we
had and a better starting point for future bike shedding.
Note that the previous organization was designed to allow separate
analysis and optimization libraries. It turns out this is an
artificial distinction and not an important goal.
This is more resilient, since we want to be able to add more information behind the address point of type objects. The start of the metadata object is now an internal "full metadata" symbol.
Note that we can't do this for known opaque metadata from the C++ runtime, since clang doesn't have a good way to emit offset symbol aliases, so for non-nominal metadata objects we still emit an adjustment inline. We also aren't able to generate references to aliases within the same module due to an MC bug with alias refs on i386 and armv7 (rdar://problem/22450593).
Swift SVN r31523
This is more resilient, since we want to be able to add more information behind the address point of type objects, and also makes IR a lot less cluttered. The start of the metadata object is now an internal "full metadata" symbol.
Note that we can't do this for known opaque metadata from the C++ runtime, since clang doesn't have a good way to emit offset symbol aliases, so for non-nominal metadata objects we still emit an adjustment inline.
Swift SVN r31515
No intended functionality change, although this may make it easier to
get the REPL up and running on Linux. This is still useful for compiler
hackers even if it's not an end-user feature.
Swift SVN r31502
Make unqualified lookup always provide a declaration for the things it
finds, rather than providing either a module or a declaration. Unify
various code paths in our type checker now that module declarations
come in with the other declarations.
Swift SVN r28286
Modules occupy a weird space in the AST now: they can be treated like
types (Swift.Int), which is captured by ModuleType. They can be
treated like values for disambiguation (Swift.print), which is
captured by ModuleExpr. And we jump through hoops in various places to
store "either a module or a decl".
Start cleaning this up by transforming Module into ModuleDecl, a
TypeDecl that's implicitly created to describe a module. Subsequent
changes will start folding away the special cases (ModuleExpr ->
DeclRefExpr, name lookup results stop having a separate Module case,
etc.).
Note that the Module -> ModuleDecl typedef is there to limit the
changes needed. Much of this patch is actually dealing with the fact
that Module used to have Ctx and Name public members that now need to
be accessed via getASTContext() and getName(), respectively.
Swift SVN r28284
This will be needed for split-llvm code generation.
If multiple -o options are specified and only a single output file is needed
(currently always), the last one wins. This is NFC.
Swift SVN r25884
The list of libraries to be loaded was not sorted in the topological
order of dependencies, and we don't know the dependencies in advance.
Now we try to load all libraries until we stop making progress.
rdar://19742274
Swift SVN r25069
This has been long in coming. We always had it in IRGenOpts (in string form).
We had the version number in LangOpts for availability purposes. We had to
pass IRGenOpts to the ClangImporter to actually create the right target.
Some of our semantic checks tested the current OS by looking at the "os"
target configuration! And we're about to need to serialize the target for
debugging purposes.
Swift SVN r24468
...and then honor them.
While here, make -l a little more flexible (see interpret_with_options test).
rdar://problem/17830826, which unblocks the LLDB feature for the same.
Swift SVN r24033
it can be linked again to produce the whole IR to dump. Indeed, with the new
JIT, the link process destroys the source module.
<rdar://problem/19191413>
Swift SVN r23945
This should have been done a long time ago since SILOptions are options that
should be able to effect everything SIL related. In this case I just want to
pass in a flag on the SILModule to enable +0 self. By putting it on the
SILModule I can conveniently check it in SILFunctionType without exposing any
internal state from SILFunctionType.cpp.
Swift SVN r23647
Factor out the code that sets up llvm::TargetOptions and SubtargetFeatures via Clang, and reuse it in immediate mode to properly set up the ExecutionEngine to be consistent with the environment we emitted code for. This makes it so that we can use code that lowers to, for instance, SSE3 intrinsics, in particular stuff like GLKit code imported from Clang.
Swift SVN r23646
The llvm commit message suggests that the linker mode might be re-activated again.
Therefore I have only commented out the relevant code and not removed it.
Swift SVN r22989
Eliminate the intermediate top_level_code function. Now that SIL is expressive enough to express a "main" function, there's no reason for it, and this eliminates a bunch of mystery code in IRGen to thunk from main to top_level_code by reaching for hardcoded symbol names. Demystify the special code for setting up C_ARGC and C_ARGV by having SILGen look for a transparent "_didEnterMain" hook in the stdlib and emit a call to it.
Swift SVN r22525
We don't want typos in import statements to take down the whole REPL, but we
/do/ want the REPL to be honoring fatal errors that effectively take down the
ASTContext.
This doesn't (yet) apply to the real LLDB REPL, which does not use
SourceFileKind::REPL for its input. The right option to test there is
LangOpts.DebuggerSupport, but that's currently being set for Playgrounds as
well. I've filed <rdar://problem/18090611> for LLDB to adjust their input.
Part of <rdar://problem/17994094>
Swift SVN r21383
We were already effectively doing this everywhere /except/ when building
the standard library (which used -O2), so just use the model we want going
forward.
Swift SVN r20455
Previously we were only getting system search paths (via dlopen), so you
couldn't ever load system frameworks.
This is the compiler side of <rdar://problem/17629517>, which is
unfortunately not the useful part.
Swift SVN r19831